机器学习-离散型变量处理

离散型变量处理思路

离散型变量输入通常为字符串形式,除了少数决策树模型能够直接处理类别型变量之外,对于逻辑回归、支持向量机等模型而言,必须将类别型变量转换为数值型变量才能正确的工作。

1.Ordinary Encoding(Label Encoding)

自然编码,按照类别出现的自然顺序进行编码,通常用于处理类别之间存在大小关系的数据。

编码顺序会按照大小关系对类别型特征赋予自己的数值ID,但是同时保留了大小关系。

2.One-hot Encoding

独热编码,将N个特征编码为N维的稀疏向量,有效解决了自然编码存在大小关系保留的问题,不好处理数据属性的问题,在一定程度上扩充了维度。

但是当类别过多时,会造成维度灾难。

3. Binary Encoding

将原本的独热编码编码为二进制单位,一定程度上增加了信息的稠密度

4.直接采用LGB、catboost等能直接读取类别型变量的树模型

5.Embedding

将模型类别型变量进行嵌入的操作,可以有效压缩one-hot编码造成的数据稀疏的问题

相关推荐
一ge科研小菜鸡3 分钟前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河5 分钟前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14556 分钟前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
終不似少年遊*18 分钟前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥27 分钟前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__33 分钟前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程
谨慎谦虚1 小时前
Trae 体验:探索被忽视的 Chat 模式
人工智能·trae
北极的树1 小时前
AI驱动的大前端开发工作流
人工智能
IT古董2 小时前
【漫话机器学习系列】100.L2 范数(L2 Norm,欧几里得范数)
人工智能·机器学习
小天努力学java2 小时前
【面试系列】Java开发--AI常见面试题
java·人工智能·面试