回归和分类区别

回归任务(Regression):

特点:

  • 输出是连续值,通常是实数。
  • 任务目标是预测或估计一个数值。
  • 典型应用包括房价预测、销售额预测、温度预测等。

目标:

  • 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
  • 模型输出的是一个实数,不需要进行类别之间的区分。

分类任务(Classification):

特点:

  • 输出是离散值,通常是类别标签。
  • 任务目标是将输入分为不同的类别。
  • 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。

目标:

  • 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
  • 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。

通用注意事项:

  1. 输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。

  2. 激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。

  3. 损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。

  4. 评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。

  5. 数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。

总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。

相关推荐
迦蓝叶17 分钟前
RDF 与 RDFS:知识图谱推理的基石
java·人工智能·数据挖掘·知识图谱·语义网·rdf·rdfs
xuehaikj6 小时前
苹果质量检测与分类 - YOLO13结合RFCAConv实现
人工智能·数据挖掘
xuehaikj6 小时前
芦笋嫩茎形态分类与识别_YOLO11-C3k2-MambaOut-SFSC模型实现_1
人工智能·数据挖掘
qunshankeji6 小时前
YOLOv8-SOEP-RFPN-MFM水果智能分类与检测模型实现
yolo·分类·数据挖掘
m0_4626052210 小时前
第N5周:Pytorch文本分类入门
人工智能·pytorch·分类
沧澜sincerely12 小时前
数据挖掘概述
人工智能·数据挖掘
极客学术工坊19 小时前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
Learn Beyond Limits1 天前
Regression vs. Classification|回归vs分类
人工智能·python·算法·ai·分类·数据挖掘·回归
mayubins1 天前
稳定边界层高度参数化方案的回归建模
人工智能·数据挖掘·回归
迦蓝叶1 天前
Apache Jena:利用 SPARQL 查询与推理机深度挖掘知识图谱
java·数据挖掘·apache·知识图谱·查询·知识挖掘·推理机