回归和分类区别

回归任务(Regression):

特点:

  • 输出是连续值,通常是实数。
  • 任务目标是预测或估计一个数值。
  • 典型应用包括房价预测、销售额预测、温度预测等。

目标:

  • 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
  • 模型输出的是一个实数,不需要进行类别之间的区分。

分类任务(Classification):

特点:

  • 输出是离散值,通常是类别标签。
  • 任务目标是将输入分为不同的类别。
  • 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。

目标:

  • 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
  • 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。

通用注意事项:

  1. 输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。

  2. 激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。

  3. 损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。

  4. 评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。

  5. 数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。

总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。

相关推荐
张小凡vip1 小时前
数据挖掘(九) --Anaconda 全面了解与安装指南
人工智能·数据挖掘
薛定谔的猫19821 小时前
十二、基于 BERT 的中文文本二分类模型测试实战:从数据加载到准确率评估
人工智能·分类·bert
忘忧记2 小时前
某小说数据分析过程
windows·数据挖掘·数据分析
龙腾AI白云15 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘
Aloudata18 小时前
告别 90% 误报率:基于算子级血缘实现精准数据治理与变更影响分析
数据挖掘·数据治理·元数据·数据血缘
Faker66363aaa1 天前
基于YOLO11-Seg-EfficientViT的书籍缺陷检测与分类系统详解
人工智能·分类·数据挖掘
山楂树の1 天前
计算机图形学 模型矩阵的逆矩阵:如何从“世界”回归“局部”?
线性代数·矩阵·回归
蚁巡信息巡查系统1 天前
网站信息发布再巡查机制怎么建立?
大数据·人工智能·数据挖掘·内容运营
2501_941337061 天前
蓝莓成熟度自动检测与分类_基于YOLO11-C3k2-AdditiveBlock-CGLU的深度学习实现
深度学习·分类·数据挖掘
Testopia1 天前
AI编程实例 - 爆款文章预测:K-Means聚类与分类算法的实践
人工智能·分类·kmeans·ai编程·聚类