回归和分类区别

回归任务(Regression):

特点:

  • 输出是连续值,通常是实数。
  • 任务目标是预测或估计一个数值。
  • 典型应用包括房价预测、销售额预测、温度预测等。

目标:

  • 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
  • 模型输出的是一个实数,不需要进行类别之间的区分。

分类任务(Classification):

特点:

  • 输出是离散值,通常是类别标签。
  • 任务目标是将输入分为不同的类别。
  • 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。

目标:

  • 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
  • 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。

通用注意事项:

  1. 输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。

  2. 激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。

  3. 损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。

  4. 评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。

  5. 数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。

总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。

相关推荐
六行神算API-天璇2 小时前
架构思考:大模型作为医疗科研的“智能中间件”
人工智能·中间件·架构·数据挖掘·ar
测试人社区-小明7 小时前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘
Niuguangshuo10 小时前
解密GPT的生成魔法:自回归模型
gpt·数据挖掘·回归
Java后端的Ai之路12 小时前
【分析式AI】-分类与回归的区别以及内联
人工智能·分类·数据挖掘·回归·aigc
亿坊电商12 小时前
跨境出口电商系统如何提升出口电商业务的效率和可管理性?
数据挖掘·数据分析·系统架构
六行神算API-天璇13 小时前
技术实践:用大模型平台重构医疗数据分析Pipeline
人工智能·重构·数据挖掘·数据分析
feifeigo12313 小时前
SVM分类在高光谱遥感图像分类与预测中的应用
算法·支持向量机·分类
爱看科技13 小时前
微美全息(NASDAQ:WIMI)量子信息与经典算法融合,开启多类图像分类新征程
算法·分类·量子计算
AAD5558889914 小时前
轴体分类识别:基于Decoupled-Solo-Light模型的中心轴、铁质轴和尼龙轴自动检测与分类系统
人工智能·分类·数据挖掘
子夜江寒14 小时前
数据处理:下采样与SMOTE过采样
回归