回归和分类区别

回归任务(Regression):

特点:

  • 输出是连续值,通常是实数。
  • 任务目标是预测或估计一个数值。
  • 典型应用包括房价预测、销售额预测、温度预测等。

目标:

  • 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
  • 模型输出的是一个实数,不需要进行类别之间的区分。

分类任务(Classification):

特点:

  • 输出是离散值,通常是类别标签。
  • 任务目标是将输入分为不同的类别。
  • 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。

目标:

  • 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
  • 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。

通用注意事项:

  1. 输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。

  2. 激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。

  3. 损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。

  4. 评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。

  5. 数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。

总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。

相关推荐
老蒋新思维2 小时前
创客匠人启示录:AI 时代知识变现的底层逻辑重构 —— 从峰会实践看创始人 IP 的破局之路
网络·人工智能·网络协议·tcp/ip·数据挖掘·创始人ip·创客匠人
大千AI助手2 小时前
Softmax回归:原理、实现与多分类问题的基石
人工智能·机器学习·分类·数据挖掘·回归·softmax·大千ai助手
qq_436962183 小时前
奥威AI数据智能体:当BI遇上AI,企业数据分析的“确定性”革命
人工智能·数据挖掘·数据分析
老蒋新思维3 小时前
创客匠人深度洞察:创始人 IP 打造的非线性增长模型 —— 知识变现的下一个十年红利
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
小王毕业啦4 小时前
2007-2024年 地级市-公共数据开放DID
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
袋鼠云数栈5 小时前
AI的下半场,产业需要一个怎样的数据中台?
大数据·人工智能·数据挖掘
Hcoco_me5 小时前
大模型面试题15:DBSCAN聚类算法:步骤、缺陷及改进方向
算法·数据挖掘·聚类
Yawesh_best6 小时前
在 openEuler 上使用 Pandas 进行数据分析实战
数据挖掘·数据分析·pandas
计算机学姐7 小时前
基于Python的B站数据分析及可视化系统【2026最新】
开发语言·vue.js·python·信息可视化·数据挖掘·数据分析·推荐算法
老蒋新思维9 小时前
创客匠人启示录:AI 时代知识变现的效率革命 —— 从人力驱动到智能体自动化的跃迁
网络·人工智能·网络协议·tcp/ip·数据挖掘·创始人ip·创客匠人