回归和分类区别

回归任务(Regression):

特点:

  • 输出是连续值,通常是实数。
  • 任务目标是预测或估计一个数值。
  • 典型应用包括房价预测、销售额预测、温度预测等。

目标:

  • 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
  • 模型输出的是一个实数,不需要进行类别之间的区分。

分类任务(Classification):

特点:

  • 输出是离散值,通常是类别标签。
  • 任务目标是将输入分为不同的类别。
  • 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。

目标:

  • 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
  • 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。

通用注意事项:

  1. 输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。

  2. 激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。

  3. 损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。

  4. 评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。

  5. 数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。

总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。

相关推荐
2501_941837267 小时前
CV医疗应用:基于YOLOv8-RepHGNetV2的疟疾寄生虫细胞形态检测与分类系统
yolo·分类·数据挖掘
小鸡吃米…11 小时前
机器学习中的分类算法
人工智能·机器学习·分类
绝不原创的飞龙11 小时前
K 最近邻回归器,解释:带代码示例的视觉指南
人工智能·数据挖掘·回归
高洁0115 小时前
产品数字孪生体与数字样机及数字化交付的应用
人工智能·深度学习·算法·数据挖掘·transformer
2501_9415079415 小时前
通信基站天线设备检测与分类YOLO11-LSCD-LQE算法实现与优化
算法·分类·数据挖掘
飞Link17 小时前
指令调整阶段中的通用模型蒸馏、模型自我提升和数据扩充
python·算法·数据挖掘
2501_9415079418 小时前
使用_ssd300_训练蘑菇分类数据集经验总结_毒菇与食用菇自动识别研究
人工智能·分类·数据挖掘
薛不痒18 小时前
项目:矿物分类(训练模型)
开发语言·人工智能·python·学习·算法·机器学习·分类
AAD5558889918 小时前
伊蚊种类识别与分类——基于VFNet的蚊虫识别模型训练与实现
人工智能·数据挖掘
2501_9421917719 小时前
微生物图像识别与分类:基于YOLO11-C3k2-SFHF的六类微生物自动检测方法详解
人工智能·分类·数据挖掘