回归和分类区别

回归任务(Regression):

特点:

  • 输出是连续值,通常是实数。
  • 任务目标是预测或估计一个数值。
  • 典型应用包括房价预测、销售额预测、温度预测等。

目标:

  • 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
  • 模型输出的是一个实数,不需要进行类别之间的区分。

分类任务(Classification):

特点:

  • 输出是离散值,通常是类别标签。
  • 任务目标是将输入分为不同的类别。
  • 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。

目标:

  • 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
  • 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。

通用注意事项:

  1. 输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。

  2. 激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。

  3. 损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。

  4. 评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。

  5. 数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。

总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。

相关推荐
天呐草莓11 分钟前
支持向量机(SVM)
人工智能·python·算法·机器学习·支持向量机·数据挖掘·数据分析
智算菩萨12 分钟前
【实战】基于机器学习的中文文本分类系统实现
机器学习·分类·文本分类
Pyeako15 分钟前
机器学习--决策树
人工智能·python·决策树·机器学习·分类·pycharm·回归树
foundbug99916 分钟前
LibSVM与模糊支持向量机(FSVM)分类方法详解
机器学习·支持向量机·分类
databook16 小时前
掌握相关性分析:读懂数据间的“悄悄话”
python·数据挖掘·数据分析
十六年开源服务商19 小时前
怎样做好WordPress网站数据分析与运维服务
运维·数据挖掘·数据分析
沃达德软件19 小时前
大数据治安防控中心
大数据·人工智能·信息可视化·数据挖掘·数据分析
anghost15021 小时前
基于 STM32 的湖泊水位报警系统设计
stm32·嵌入式硬件·数据挖掘
Lun3866buzha21 小时前
大型铸件表面缺陷检测与分类_YOLO11-C2BRA应用实践
人工智能·分类·数据挖掘
黑客思维者1 天前
一文读懂神经网络分类:从基础架构到前沿融合
人工智能·神经网络·分类