神经网络-非线性激活

ReLU

python 复制代码
import torch
from torch import nn

input = torch.tensor([[1, -0.5],
                      [-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape) # torch.Size([1, 1, 2, 2])     .shape = .size()

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1 = nn.ReLU()

    def forward(self, input):
        output = self.relu1(input)
        return output

tudui = Tudui()
output = tudui(input)
print(output) # tensor([[[[1., 0.],[0., 3.]]]])

Result

Sigmoid

python 复制代码
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

'''input = torch.tensor([[1, -0.5],
                      [-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape) # torch.Size([1, 1, 2, 2])     .shape = .size()'''

dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1 = nn.ReLU()
        self.sigmoid1 = nn.Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output

tudui = Tudui()
writer = SummaryWriter('./logs_relu')
step = 0
for data in dataloader:
    imgs, targets = data
    writer.add_images('input', imgs, step)
    output = tudui(imgs)
    writer.add_images('output', output, step)
    step += 1

writer.close()

目的:引入非线性特征,非线性越多,才能训练出符合各种曲线,符合各种特征的模型,泛化能力好

下面是ReLU的结果

相关推荐
hans汉斯1 小时前
基于深度学习的苹果品质智能检测算法研究
人工智能·深度学习·算法
2401_831896031 小时前
深度学习(5):激活函数
人工智能·深度学习
deephub2 小时前
Dots.ocr:告别复杂多模块架构,1.7B参数单一模型统一处理所有OCR任务22
人工智能·深度学习·神经网络·ocr
蒋星熠2 小时前
Rust 异步生态实战:Tokio 调度、Pin/Unpin 与零拷贝 I/O
人工智能·后端·python·深度学习·rust
巫婆理发2224 小时前
浅层神经网络
人工智能·深度学习·神经网络
未来之窗软件服务4 小时前
自建知识库,向量数据库 体系建设(二)之BERT 与.NET 8
人工智能·深度学习·bert·知识库·向量数据库·仙盟创梦ide·东方仙盟
失散138 小时前
深度学习——03 神经网络(3)-网络优化方法
网络·深度学习·神经网络
m0_603888718 小时前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
盼小辉丶9 小时前
PyTorch生成式人工智能——基于Transformer实现文本转语音
人工智能·pytorch·transformer
xw337340956411 小时前
《卷积神经网络(CNN):解锁视觉与多模态任务的深度学习核心》
人工智能·pytorch·深度学习·神经网络·cnn