神经网络-非线性激活

ReLU

python 复制代码
import torch
from torch import nn

input = torch.tensor([[1, -0.5],
                      [-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape) # torch.Size([1, 1, 2, 2])     .shape = .size()

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1 = nn.ReLU()

    def forward(self, input):
        output = self.relu1(input)
        return output

tudui = Tudui()
output = tudui(input)
print(output) # tensor([[[[1., 0.],[0., 3.]]]])

Result

Sigmoid

python 复制代码
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

'''input = torch.tensor([[1, -0.5],
                      [-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape) # torch.Size([1, 1, 2, 2])     .shape = .size()'''

dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1 = nn.ReLU()
        self.sigmoid1 = nn.Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output

tudui = Tudui()
writer = SummaryWriter('./logs_relu')
step = 0
for data in dataloader:
    imgs, targets = data
    writer.add_images('input', imgs, step)
    output = tudui(imgs)
    writer.add_images('output', output, step)
    step += 1

writer.close()

目的:引入非线性特征,非线性越多,才能训练出符合各种曲线,符合各种特征的模型,泛化能力好

下面是ReLU的结果

相关推荐
技术小黑33 分钟前
Transformer系列 | Pytorch复现Transformer
pytorch·深度学习·transformer
DogDaoDao2 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
西猫雷婶3 小时前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
寒月霜华4 小时前
机器学习-模型验证
人工智能·深度学习·机器学习
max5006005 小时前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
I'm a winner8 小时前
第七章:AI进阶之------输入与输出函数(一)
开发语言·人工智能·python·深度学习·神经网络·microsoft·机器学习
Orange_sparkle8 小时前
解决Dify中接入xinference模型无法开关思考模式和使用function calling的问题
人工智能·深度学习·语言模型·chatgpt
似乎很简单11 小时前
卷积神经网络(CNN)
深度学习·神经网络·cnn
盼小辉丶12 小时前
Transformer实战(18)——微调Transformer语言模型进行回归分析
深度学习·语言模型·回归·transformer
格林威12 小时前
机器视觉检测如何使用360 度全景成像镜头进行AI 瑕疵检测
人工智能·深度学习·数码相机·机器学习·计算机视觉·视觉检测·相机