DataLoader的使用

官方网站进行查看DataLoader

batch_size 的含义

python 复制代码
import torchvision
from torch.utils.data import DataLoader

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10('D:\Pytorch\pythonProject\Transform\dataset', train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=4, shuffle=False, num_workers=0, drop_last=False)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape) # torch.Size([3, 32, 32])
print(target) # 3

for data in test_loader:
    imgs, targets = data
    print(imgs.shape) # torch.Size([4, 3, 32, 32]); 4就是batch_size, 3是通道, 32×32是图片大小
    print(targets) # tensor([3, 8, 8, 0]); 4张图片的target
python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10('D:\Pytorch\pythonProject\Transform\dataset', train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape) # torch.Size([3, 32, 32])
print(target) # 3

writer = SummaryWriter('dataloader')
for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape) # torch.Size([4, 3, 32, 32]); 4就是batch_size, 3是通道, 32×32是图片大小
        # print(targets) # tensor([3, 8, 8, 0]); 4张图片的target
        writer.add_images('Epoch: {}'.format(epoch), imgs, step)
        step += 1

writer.close()

shuffle=True 的话,会随机成batch

相关推荐
张拭心8 分钟前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩40 分钟前
大模型 MoE,你明白了么?
人工智能·llm
这个人懒得名字都没写2 小时前
Python包管理新纪元:uv
python·conda·pip·uv
有泽改之_2 小时前
leetcode146、OrderedDict与lru_cache
python·leetcode·链表
Blossom.1182 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
是毛毛吧2 小时前
边打游戏边学Python的5个开源项目
python·开源·github·开源软件·pygame
t198751282 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技2 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe2 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen2 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习