DataLoader的使用

官方网站进行查看DataLoader

batch_size 的含义

python 复制代码
import torchvision
from torch.utils.data import DataLoader

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10('D:\Pytorch\pythonProject\Transform\dataset', train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=4, shuffle=False, num_workers=0, drop_last=False)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape) # torch.Size([3, 32, 32])
print(target) # 3

for data in test_loader:
    imgs, targets = data
    print(imgs.shape) # torch.Size([4, 3, 32, 32]); 4就是batch_size, 3是通道, 32×32是图片大小
    print(targets) # tensor([3, 8, 8, 0]); 4张图片的target
python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10('D:\Pytorch\pythonProject\Transform\dataset', train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape) # torch.Size([3, 32, 32])
print(target) # 3

writer = SummaryWriter('dataloader')
for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape) # torch.Size([4, 3, 32, 32]); 4就是batch_size, 3是通道, 32×32是图片大小
        # print(targets) # tensor([3, 8, 8, 0]); 4张图片的target
        writer.add_images('Epoch: {}'.format(epoch), imgs, step)
        step += 1

writer.close()

shuffle=True 的话,会随机成batch

相关推荐
简佐义的博客15 分钟前
Genome Biol. IF 9.4 Q1 | ATAC-seq 数据分析实用指南,根据本文就可以构建ATAC生信分析流程了
人工智能
云和数据.ChenGuang39 分钟前
pycharm怎么将背景换成白色
ide·python·pycharm
老蒋新思维1 小时前
陈修超入局:解锁 AI 与 IP 融合的创新增长密码
网络·人工智能·网络协议·tcp/ip·企业管理·知识付费·创客匠人
我的xiaodoujiao1 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 25--数据驱动--参数化处理 Excel 文件 2
前端·python·学习·测试工具·ui·pytest
San30.1 小时前
从代码规范到 AI Agent:现代前端开发的智能化演进
javascript·人工智能·代码规范
DO_Community1 小时前
基于AI Agent模板:快速生成 SQL 测试数据
人工智能·python·sql·ai·llm·ai编程
HeteroCat1 小时前
关于No Chatbot的思考
人工智能
咚咚王者1 小时前
人工智能之数据分析 numpy:第一章 学习链路
人工智能·数据分析·numpy
中杯可乐多加冰1 小时前
数据分析案例详解:基于smardaten实现智慧交通运营指标数据分析展示
人工智能·低代码·数据分析·交通物流·智慧交通·无代码·大屏端
算家计算1 小时前
对标ChatGPT!千问App正式上线:AI应用终局之战正在打响
人工智能·资讯