【大数据进阶第三阶段之Hive学习笔记】Hive基础入门

目录

1、什么是Hive

2、Hive的优缺点

[2.1、 优点](#2.1、 优点)

[2.2、 缺点](#2.2、 缺点)

2.2.1、Hive的HQL表达能力有限

2.2.2、Hive的效率比较低

3、Hive架构原理

3.1、用户接口:Client

3.2、元数据:Metastore

3.3、Hadoop

3.4、驱动器:Driver

Hive运行机制

4、Hive和数据库比较

[4.1、 数据更新](#4.1、 数据更新)

4.2、执行延迟

4.3、数据规模


1、什么是Hive

Hive:由Facebook开源用于解决海量结构化日志的数据统计。

Hive设计的初衷是:对于大量的数据,使得数据汇总,查询和分析更加简单。它提供了SQL,允许用户更加简单地进行查询,汇总和数据分析。同时,Hive的SQL给予了用户多种方式来集成自己的功能,然后做定制化的查询,例如用户自定义函数(User Defined Functions,UDFs).

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。

本质是:将HQL转化成MapReduce程序

1)Hive处理的数据存储在HDFS

2)Hive分析数据底层的实现是MapReduce

3)执行程序运行在Yarn上

2、Hive的优缺点

2.1、 优点

  • 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
  • 避免了去写MapReduce,减少开发人员的学习成本。
  • Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
  • Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
  • Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

2.2、 缺点

2.2.1、Hive的HQL表达能力有限

(1)迭代式算法无法表达

(2)数据挖掘方面不擅长

2.2.2、Hive的效率比较低

(1)Hive自动生成的MapReduce作业,通常情况下不够智能化

(2)Hive调优比较困难,粒度较粗

3、Hive架构原理

3.1、用户接口:Client

CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)

3.2、元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

3.3、Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

3.4、驱动器:Driver

  • 解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
  • 编译器(Physical Plan):将AST编译生成逻辑执行计划。
  • 优化器(Query Optimizer):对逻辑执行计划进行优化。
  • 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
Hive运行机制

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

4、Hive和数据库比较

由于Hive采用类似SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构来看,Hive 和数据库除了用于类似的查询语言,

再无类似之处。

4.1、 数据更新

由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少。因此,Hive中不建议对数据的改写,所有数据都是在加载的时候确定好的。而数据库中的数据通常是需要进行

修改的,因此可以采用insert into ... values添加数据,使用update ... set修改数据

4.2、执行延迟

Hive在查询数据的时候,由于没有索引,需要扫描整个表。因此延迟较高。由于Hive底层使用的MR框架,而MR本身具有较高的延迟,因此在利用MR执行Hive查询的时候,也有较高的延迟。

4.3、数据规模

由于Hive简历在集群上可以利用MR进行并行计算,因此可以支持很大规模的数据。

相关推荐
我的xiaodoujiao31 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 38--Allure 测试报告
python·学习·测试工具·pytest
好奇龙猫7 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
saoys7 小时前
Opencv 学习笔记:图像掩膜操作(精准提取指定区域像素)
笔记·opencv·学习
电子小白1238 小时前
第13期PCB layout工程师初级培训-1-EDA软件的通用设置
笔记·嵌入式硬件·学习·pcb·layout
智能相对论8 小时前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
唯情于酒8 小时前
Docker学习
学习·docker·容器
charlie11451419110 小时前
嵌入式现代C++教程: 构造函数优化:初始化列表 vs 成员赋值
开发语言·c++·笔记·学习·嵌入式·现代c++
焦耳热科技前沿10 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
IT=>小脑虎10 小时前
C++零基础衔接进阶知识点【详解版】
开发语言·c++·学习
#眼镜&10 小时前
嵌入式学习之路2
学习