[C#]C# OpenVINO部署yolov8实例分割模型

【官方框架地址】

https://github.com/ultralytics/ultralytics.git

【算法介绍】

YOLOv8 抛弃了前几代模型的 Anchor-Base。

YOLO 是一种基于图像全局信息进行预测的目标检测系统。自 2015 年 Joseph Redmon、Ali Farhadi 等人提出初代模型以来,领域内的研究者们已经对 YOLO 进行了多次更新迭代,模型性能越来越强大。现在,YOLOv8 已正式发布。

YOLOv8 是由小型初创公司 Ultralytics 创建并维护的,值得注意的是 YOLOv5 也是由该公司创建的。

【效果展示】

【实现部分代码】

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;

namespace FIRC
{
    public partial class Form1 : Form
    {
        Mat src = new Mat();
        Yolov8SegManager ym = new Yolov8SegManager();
        public Form1()
        {
            InitializeComponent();
        }

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog openFileDialog = new OpenFileDialog();
            openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";
            openFileDialog.RestoreDirectory = true;
            openFileDialog.Multiselect = false;
            if (openFileDialog.ShowDialog() == DialogResult.OK)
            {
              
                src = Cv2.ImRead(openFileDialog.FileName);
                pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);


            }


        }

        private void button2_Click(object sender, EventArgs e)
        {
            if(pictureBox1.Image==null)
            {
                return;
            }
            Stopwatch sw = new Stopwatch();
            sw.Start();
            var result = ym.Inference(src);
            sw.Stop();
            this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";
            var resultMat = ym.DrawImage(src,result);
            pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            ym.LoadWeights(Application.StartupPath+ "\\weights\\yolov8s-seg.onnx", Application.StartupPath + "\\weights\\labels.txt");

        }

        private void btn_video_Click(object sender, EventArgs e)
        {
        
  
        }
    }
}

【视频演示】

https://www.bilibili.com/video/BV1fe411S7ag/

【源码下载】

https://download.csdn.net/download/FL1623863129/88696606

【测试环境】

vs2019

netframework4.8

opencvsharp4.8.0

opencvsharp

注意无需额外安装openvino运行库直接可以运行

相关推荐
草莓熊Lotso17 分钟前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_1 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º5 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º8 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算