PyTorch|在张量运算中使用GPU

pytorch在张量运算时允许我们在GPU上进行计算,我们可以采用这些方法将数据无缝的移入或移出GPU。

当我们进入GPU时,我们可以使用cuda()方法 ,当我们进入CPU时,我们可以使用**cpu()**方法。

同时,我们还可以使用to() 方法,去GPU的时候,我们写到**('cuda')** ,去CPU的时候,我们写到**('cpu')**。

在训练过程中,要想利用我们的GPU,有两个基本要求:

  • 数据必须移到GPU上

  • 网络必须移到GPU上

默认情况下,在创建PyTorch张量或PyTorch神经网络模块时,会在CPU上初始化相应的数据。具体来说,这些数据存在于CPU的内存中。

下面是一些实例:

复制代码
>>> import torch
>>> data=torch.tensor([1,2,3,4])>>> data.devicedevice(type='cpu')
>>> v1=data.to('cuda')>>> v1.devicedevice(type='cuda', index=0)>>> v2=data.cuda()>>> v2.devicedevice(type='cuda', index=0)
>>> v3=v2.to('cpu')>>> v3.devicedevice(type='cpu')>>> v4=v2.cpu()>>> v4.device

然而,代码需要在不同的设备都能运行,也就是在不修改代码的情况下在GPU上可以使用或者在只能使用CPU的设备上运行

例如,假设我们写的代码到处使用cuda()方法,然后,我们把代码交给一个没有GPU的用户,这样做是行不通的。

对此,我们可以这样处理:​​​​​​​

复制代码
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")input=data.to(device)network=Network()net=network.to(device)

总结起来,在我们编写的代码中,尽量使用这种形式:​​​​​​​

复制代码
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")***=***.to(device)
相关推荐
Darkershadow6 小时前
蓝牙学习之unprovision beacon
python·学习·ble
GitCode官方6 小时前
参会预告 | AtomGit 邀您共赴 TritonNext 2026 技术大会,解锁 AI 系统与编译生态新机遇
人工智能·开源·atomgit
MobiusStack7 小时前
Cursor团队最新文章解读丨动态上下文发现,重新定义AI记忆
人工智能
Rui_Freely7 小时前
Vins-Fusion之 相机—IMU在线标定(十一)
人工智能·算法·计算机视觉
沛沛老爹7 小时前
Web开发者5分钟上手:Agent Skills环境搭建与基础使用实战
java·人工智能·llm·llama·rag·agent skills
小龙在山东7 小时前
基于 plumbum 跨平台执行Shell脚本
python
DeepFlow 零侵扰全栈可观测7 小时前
3分钟定位OA系统GC瓶颈:DeepFlow全栈可观测平台实战解析
大数据·运维·人工智能·云原生·性能优化
想用offer打牌7 小时前
一站式讲清Spring AI Alibaba的OverAllState和RunnableConfig
人工智能·架构·github
生成论实验室7 小时前
生成论之基:“阴阳”作为元规则的重构与证成——基于《易经》与《道德经》的古典重诠与现代显象
人工智能·科技·神经网络·算法·架构
CCPC不拿奖不改名7 小时前
python基础:python语言中的函数与模块+面试习题
开发语言·python·面试·职场和发展·蓝桥杯