PyTorch|在张量运算中使用GPU

pytorch在张量运算时允许我们在GPU上进行计算,我们可以采用这些方法将数据无缝的移入或移出GPU。

当我们进入GPU时,我们可以使用cuda()方法 ,当我们进入CPU时,我们可以使用**cpu()**方法。

同时,我们还可以使用to() 方法,去GPU的时候,我们写到**('cuda')** ,去CPU的时候,我们写到**('cpu')**。

在训练过程中,要想利用我们的GPU,有两个基本要求:

  • 数据必须移到GPU上

  • 网络必须移到GPU上

默认情况下,在创建PyTorch张量或PyTorch神经网络模块时,会在CPU上初始化相应的数据。具体来说,这些数据存在于CPU的内存中。

下面是一些实例:

复制代码
>>> import torch
>>> data=torch.tensor([1,2,3,4])>>> data.devicedevice(type='cpu')
>>> v1=data.to('cuda')>>> v1.devicedevice(type='cuda', index=0)>>> v2=data.cuda()>>> v2.devicedevice(type='cuda', index=0)
>>> v3=v2.to('cpu')>>> v3.devicedevice(type='cpu')>>> v4=v2.cpu()>>> v4.device

然而,代码需要在不同的设备都能运行,也就是在不修改代码的情况下在GPU上可以使用或者在只能使用CPU的设备上运行

例如,假设我们写的代码到处使用cuda()方法,然后,我们把代码交给一个没有GPU的用户,这样做是行不通的。

对此,我们可以这样处理:​​​​​​​

复制代码
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")input=data.to(device)network=Network()net=network.to(device)

总结起来,在我们编写的代码中,尽量使用这种形式:​​​​​​​

复制代码
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")***=***.to(device)
相关推荐
九河云11 小时前
华为云ECS与Flexus云服务器X实例:差异解析与选型指南
大数据·运维·服务器·网络·人工智能·华为云
AI优秘企业大脑11 小时前
如何提升自动化业务流程的效率?
大数据·人工智能
这张生成的图像能检测吗11 小时前
(论文速读)视觉语言模型的无遗忘学习
人工智能·深度学习·计算机视觉·clip·持续学习·灾难性遗忘
杰克逊的日记11 小时前
LLM(大语言模型)
人工智能·语言模型·自然语言处理
Q_Q196328847511 小时前
python+django/flask基于深度学习的个性化携程美食数据推荐系统
spring boot·python·深度学习·django·flask·node.js·php
夏文强11 小时前
HarmonyOS开发-系统AI视觉能力-图片识别
人工智能·华为·harmonyos
胡耀超11 小时前
通往AGI的模块化路径:一个可能的技术架构(同时解答微调与RAG之争)
人工智能·python·ai·架构·大模型·微调·agi
说私域11 小时前
定制开发AI智能名片S2B2C商城小程序的发展与整合资源策略研究
人工智能·小程序
落羽的落羽11 小时前
【C++】现代C++的新特性constexpr,及其在C++14、C++17、C++20中的进化
linux·c++·人工智能·学习·机器学习·c++20·c++40周年
User_芊芊君子11 小时前
【深入浅出】:人工智能从入门到实战
人工智能