PyTorch|在张量运算中使用GPU

pytorch在张量运算时允许我们在GPU上进行计算,我们可以采用这些方法将数据无缝的移入或移出GPU。

当我们进入GPU时,我们可以使用cuda()方法 ,当我们进入CPU时,我们可以使用**cpu()**方法。

同时,我们还可以使用to() 方法,去GPU的时候,我们写到**('cuda')** ,去CPU的时候,我们写到**('cpu')**。

在训练过程中,要想利用我们的GPU,有两个基本要求:

  • 数据必须移到GPU上

  • 网络必须移到GPU上

默认情况下,在创建PyTorch张量或PyTorch神经网络模块时,会在CPU上初始化相应的数据。具体来说,这些数据存在于CPU的内存中。

下面是一些实例:

复制代码
>>> import torch
>>> data=torch.tensor([1,2,3,4])>>> data.devicedevice(type='cpu')
>>> v1=data.to('cuda')>>> v1.devicedevice(type='cuda', index=0)>>> v2=data.cuda()>>> v2.devicedevice(type='cuda', index=0)
>>> v3=v2.to('cpu')>>> v3.devicedevice(type='cpu')>>> v4=v2.cpu()>>> v4.device

然而,代码需要在不同的设备都能运行,也就是在不修改代码的情况下在GPU上可以使用或者在只能使用CPU的设备上运行

例如,假设我们写的代码到处使用cuda()方法,然后,我们把代码交给一个没有GPU的用户,这样做是行不通的。

对此,我们可以这样处理:​​​​​​​

复制代码
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")input=data.to(device)network=Network()net=network.to(device)

总结起来,在我们编写的代码中,尽量使用这种形式:​​​​​​​

复制代码
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")***=***.to(device)
相关推荐
阿拉丁的梦12 小时前
【maxscript】矩阵对齐-武器残影
python·3dsmax
mortimer13 小时前
Python 异常处理进阶:从 `traceback` 细节到稳健的多语言处理器
python
semantist@语校13 小时前
第十九篇|东京世界日本语学校的结构数据建模:制度函数、能力矩阵与升学图谱
数据库·人工智能·线性代数·矩阵·prompt·github·数据集
guygg8813 小时前
HOG + SVM 行人检测
人工智能·机器学习·支持向量机
和鲸社区13 小时前
四大经典案例,入门AI算法应用,含分类、回归与特征工程|2025人工智能实训季初阶赛
人工智能·python·深度学习·算法·机器学习·分类·回归
IT古董13 小时前
【第五章:计算机视觉】1.计算机视觉基础-(3)卷积神经网络核心层与架构分析:卷积层、池化层、归一化层、激活层
人工智能·计算机视觉·cnn
黎燃13 小时前
AI生成音乐的创作逻辑深析:以AIVA为例
人工智能
点云SLAM13 小时前
四元数 (Quaternion)在位姿(SE(3))表示下的各类导数(雅可比)知识(2)
人工智能·线性代数·算法·机器学习·slam·四元数·李群李代数
七芒星202313 小时前
ResNet(详细易懂解释):残差网络的革命性突破
人工智能·pytorch·深度学习·神经网络·学习·cnn
TMO Group 探谋网络科技14 小时前
Salesforce vs Magento 选型指南:成本、功能差异对比清单
人工智能·magento·电商开发