【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具Datax实现数据同步

1、准备工作:

  • JDK(1.8 以上,推荐 1.8)
  • Python(23 版本都可以)
  • Apache Maven 3.x(Compile DataX)(手动打包使用,使用 tar 包方式不需要安装)
主机名 操作系统 IP 地址 软件包
MySQL-1 CentOS 7.4 192.168.1.1 jdk-8u181-linux-x64.tar.gz datax.tar.gz
MySQL-2 CentOS 7.4 192.168.1.2

2、安装 JDK:

下载地址:Java Archive Downloads - Java SE 8(需要创建 Oracle 账号)

复制代码
[root@MySQL-1 ~]# ls
anaconda-ks.cfg  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# tar zxf jdk-8u181-linux-x64.tar.gz 
[root@DataX ~]# ls
anaconda-ks.cfg  jdk1.8.0_181  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# mv jdk1.8.0_181 /usr/local/java
[root@MySQL-1 ~]# cat <<END >> /etc/profile
export JAVA_HOME=/usr/local/java
export PATH=$PATH:"$JAVA_HOME/bin"
END
[root@MySQL-1 ~]# source /etc/profile
[root@MySQL-1 ~]# java -version
  • 因为 CentOS 7 上自带 Python 2.7 的软件包,所以不需要进行安装。

3、Linux 上安装 DataX 软件

复制代码
[root@MySQL-1 ~]# wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
[root@MySQL-1 ~]# tar zxf datax.tar.gz -C /usr/local/
[root@MySQL-1 ~]# rm -rf /usr/local/datax/plugin/*/._*  
  • 当未删除时,可能会输出:[/usr/local/datax/plugin/reader/._drdsreader/plugin.json] 不存在. 请检查您的配置文件.

验证

复制代码
[root@MySQL-1 ~]# cd /usr/local/datax/bin
[root@MySQL-1 ~]# python datax.py ../job/job.json

输出

复制代码
2021-12-13 19:26:28.828 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-13 19:26:28.829 [job-0] INFO  StandAloneJobContainerCommunicator - Total 100000 records, 2600000 bytes | Speed 253.91KB/s, 10000 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.060s |  All Task WaitReaderTime 0.068s | Percentage 100.00%
2021-12-13 19:26:28.829 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-13 19:26:18
任务结束时刻                    : 2021-12-13 19:26:28
任务总计耗时                    :                 10s
任务平均流量                    :          253.91KB/s
记录写入速度                    :          10000rec/s
读出记录总数                    :              100000
读写失败总数                    :                   0

4、DataX 基本使用

查看 streamreader \--> streamwriter 的模板:

复制代码
[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r streamreader -w streamwriter

输出

复制代码
DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.


Please refer to the streamreader document:
     https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md 

Please refer to the streamwriter document:
     https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md 
 
Please save the following configuration as a json file and  use
     python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [], 
                        "sliceRecordCount": ""
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "", 
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": ""
            }
        }
    }
}

根据模板编写 json 文件

复制代码
[root@MySQL-1 ~]# cat <<END > test.json
{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [        # 同步的列名 (* 表示所有)
       {
           "type":"string",
            "value":"Hello."
       },
       {
           "type":"string",
            "value":"河北彭于晏"
       },
   ], 
                        "sliceRecordCount": "3"     # 打印数量
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "utf-8",     # 编码
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "2"         # 并发 (即 sliceRecordCount * channel = 结果)
            }
        }
    }
}

输出 :(要是复制我上面的话,需要把 # 带的内容去掉)

5、安装 MySQL 数据库

分别在两台主机上安装:

[root@MySQL-1 ~]# yum -y install mariadb mariadb-server mariadb-libs mariadb-devel   
[root@MySQL-1 ~]# systemctl start mariadb												# 安装 MariaDB 数据库
[root@MySQL-1 ~]# mysql_secure_installation												# 初始化	
NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDBSERVERS IN PRODUCTION USE!  PLEASE READ EACH STEP CAREFULLY!Enter current password for root (enter for none):	     	# 直接回车
OK, successfully used password, moving on...
Set root password? [Y/n] y                       	 	 	# 配置 root 密码
New password: 
Re-enter new password: 
Password updated successfully!
Reloading privilege tables..... Success!
Remove anonymous users? [Y/n] y                			 	# 移除匿名用户... skipping.
Disallow root login remotely? [Y/n] n            		 	# 允许 root 远程登录... skipping.
Remove test database and access to it? [Y/n] y 		     	# 移除测试数据库... skipping.
Reload privilege tables now? [Y/n] y             	     	# 重新加载表... Success!

1)准备同步数据(要同步的两台主机都要有这个表)

MariaDB [(none)]> create database `course-study`;
Query OK, 1 row affected (0.00 sec)MariaDB [(none)]> create table `course-study`.t_member(ID int,Name varchar(20),Email varchar(30));
Query OK, 0 rows affected (0.00 sec)

因为是使用 DataX 程序进行同步的,所以需要在双方的数据库上开放权限:

grant all privileges on *.* to root@'%' identified by '123123';
flush privileges;

2)创建存储过程:

DELIMITER $$
CREATE PROCEDURE test()
BEGIN
declare A int default 1;
while (A < 3000000)do
insert into `course-study`.t_member values(A,concat("LiSa",A),concat("LiSa",A,"@163.com"));
set A = A + 1;
END while;
END $$
DELIMITER ;

3)调用存储过程(在数据源配置,验证同步使用):

call test();

6、通过 DataX 实 MySQL 数据同步

1)生成 MySQL 到 MySQL 同步的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r mysqlreader -w mysqlwriter
{"job": {"content": [{"reader": {"name": "mysqlreader",							# 读取端"parameter": {"column": [], 								# 需要同步的列 (* 表示所有的列)"connection": [{"jdbcUrl": [], 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接用户"username": "", 							# 连接密码"where": ""									# 描述筛选条件}}, "writer": {"name": "mysqlwriter",							# 写入端"parameter": {"column": [], 								# 需要同步的列"connection": [{"jdbcUrl": "", 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接密码"preSql": [], 								# 同步前. 要做的事"session": [], "username": "",								# 连接用户 "writeMode": ""								# 操作类型}}}], "setting": {"speed": {"channel": ""										# 指定并发数}}}
}

2)编写 json 文件:

[root@MySQL-1 ~]# vim install.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}

3)验证

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py install.json

输出:

2021-12-15 16:45:15.120 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-15 16:45:15.120 [job-0] INFO  StandAloneJobContainerCommunicator - Total 2999999 records, 107666651 bytes | Speed 2.57MB/s, 74999 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 82.173s |  All Task WaitReaderTime 75.722s | Percentage 100.00%
2021-12-15 16:45:15.124 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-15 16:44:32
任务结束时刻                    : 2021-12-15 16:45:15
任务总计耗时                    :                 42s
任务平均流量                    :            2.57MB/s
记录写入速度                    :          74999rec/s
读出记录总数                    :             2999999
读写失败总数                    :                   0

你们可以在目的数据库进行查看,是否同步完成。

  • 上面的方式相当于是完全同步,但是当数据量较大时,同步的时候被中断,是件很痛苦的事情;
  • 所以在有些情况下,增量同步还是蛮重要的。

7、使用 DataX 进行增量同步

使用 DataX 进行全量同步和增量同步的唯一区别就是:增量同步需要使用 where 进行条件筛选。(即,同步筛选后的 SQL)


1)编写 json 文件:

[root@MySQL-1 ~]# vim where.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","where": "ID <= 1888","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}
  • 需要注意的部分就是:where(条件筛选) 和 preSql(同步前,要做的事) 参数。

2)验证:

[root@MySQL-1 ~]# python /usr/local/data/bin/data.py where.json

输出:

2021-12-16 17:34:38.534 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-16 17:34:38.534 [job-0] INFO  StandAloneJobContainerCommunicator - Total 1888 records, 49543 bytes | Speed 1.61KB/s, 62 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.002s |  All Task WaitReaderTime 100.570s | Percentage 100.00%
2021-12-16 17:34:38.537 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-16 17:34:06
任务结束时刻                    : 2021-12-16 17:34:38
任务总计耗时                    :                 32s
任务平均流量                    :            1.61KB/s
记录写入速度                    :             62rec/s
读出记录总数                    :                1888
读写失败总数                    :                   0

目标数据库上查看:

3)基于上面数据,再次进行增量同步:

主要是 where 配置:"where": "ID > 1888 AND ID <= 2888"						# 通过条件筛选来进行增量同步

同时需要将我上面的 preSql 删除(因为我上面做的操作时 truncate 表)
相关推荐
wzx_Eleven3 分钟前
【课堂笔记】隐私计算实训营第四期:“隐语”可信隐私计算开源框架
笔记
guihong00428 分钟前
JAVA面试题、八股文学习之JVM篇
java·jvm·学习
CQXXCL33 分钟前
MySQL-学习笔记
笔记·学习·mysql
多喝开水少熬夜44 分钟前
FedGraph: Federated Graph Learning With Intelligent Sampling论文阅读
学习·论文·联邦学习
SAP学习成长之路1 小时前
SAP 零售方案 CAR 系统的介绍与研究
大数据·开发语言·sap·abap·零售·car·bapi
Lostgreen1 小时前
分布式查询处理优化之数据分片
大数据·笔记·分布式
hillstream31 小时前
gitlab工作笔记
笔记·gitlab
gogo_hua1 小时前
JVM系列之OOM观测准备
java·大数据·jvm
芯纪元2 小时前
Perl编程语言简介
笔记·perl