[C#]C# OpenVINO部署yolov8图像分类模型

【官方框架地址】

https://github.com/ultralytics/ultralytics.git

【算法介绍】

YOLOv8 抛弃了前几代模型的 Anchor-Base。

YOLO 是一种基于图像全局信息进行预测的目标检测系统。自 2015 年 Joseph Redmon、Ali Farhadi 等人提出初代模型以来,领域内的研究者们已经对 YOLO 进行了多次更新迭代,模型性能越来越强大。现在,YOLOv8 已正式发布。

YOLOv8 是由小型初创公司 Ultralytics 创建并维护的,值得注意的是 YOLOv5 也是由该公司创建的。

【效果展示】

【实现部分代码】

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;

namespace FIRC
{
    public partial class Form1 : Form
    {
        Mat src = new Mat();
        Yolov8ClsManager ym = new Yolov8ClsManager();
        public Form1()
        {
            InitializeComponent();
        }

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog openFileDialog = new OpenFileDialog();
            openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";
            openFileDialog.RestoreDirectory = true;
            openFileDialog.Multiselect = false;
            if (openFileDialog.ShowDialog() == DialogResult.OK)
            {
              
                src = Cv2.ImRead(openFileDialog.FileName);
                pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);


            }


        }

        private void button2_Click(object sender, EventArgs e)
        {
            if(pictureBox1.Image==null)
            {
                return;
            }
            Stopwatch sw = new Stopwatch();
            sw.Start();
            var result = ym.Inference(src);
            sw.Stop();
            this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";
            var resultMat = ym.DrawImage(src,result);
            pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            ym.LoadWeights(Application.StartupPath+ "\\weights\\yolov8l-cls.onnx", Application.StartupPath + "\\weights\\labels.txt");

        }

        private void btn_video_Click(object sender, EventArgs e)
        {
  
        }
    }
}

【视频演示】

https://www.bilibili.com/video/BV1uN4y1q7iu/

【源码下载】

https://download.csdn.net/download/FL1623863129/88698695?spm=1001.2014.3001.5501

【测试环境】

vs2019

netframework4.8

opencvsharp4.8.0

openvinosharp

注意无需额外安装openvino运行库直接可以运行

相关推荐
袁牛逼2 分钟前
ai外呼机器人的作用有哪些?
人工智能·机器人
BSV区块链13 分钟前
如何在BSV区块链上实现可验证AI
人工智能·区块链
武子康29 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub30 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
Q81375746036 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
qzhqbb40 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb43 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream43 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码1 小时前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深1 小时前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow