常见的几种迁移学习的方式的介绍 & Batch Normalization的原理介绍

1.使用迁移学习的优势:(1).能够快速的训练出一个比较理想的结果;(2).在数据集很小的时候也能训练出不错的结果。

2.需要注意的点:在使用预训练模型参数时,需要尽量保持和之前这个模型训练时数据的预处理方式保持一致,否则可能达不到想要的效果。

3.常见的几种迁移学习的方式:(1)载入预训练模型后训练所有参数;(2)载入权重后只训练最后几层全连接层的参数;(3)载入模型后,在原网络的基础上再加一层全连接层,只训练加的这个全连接层。这3种方式中,第2种是对设备要求最低,也是训练最快的,但是第一种方法能达到的的效果是最好的。

4. Batch Normalization: 它是google团队在2015年论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》提出的。通过该方法能够加速网络的收敛并提升准确率。一般来说,在图像预处理时,会采用标准化处理,但是随着网络的不断深入,feature map便不再满足均值为0,方差为1了,这时候就需要使用batch normalization了。这个方法第一次火是在resnet模型中运用,具体的原理建议移步一位大佬的博客:Batch normalization原理讲解

相关推荐
拓端研究室1 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI1 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20061 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3932 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
子燕若水6 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室7 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿7 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫7 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手7 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配