【机器学习】scikit-learn机器学习中随机数种子的应用与重现

随机数种子是为了能重现某一次实验生成的随机数而设立的,相同的随机数种子下,生成的随机数序列一样

一、随机数种子基础应用

在python中简单运用随机数种子

csharp 复制代码
import random
random.seed(1)
a = random.sample(range(0,100),10)
random.seed(2)
b = random.sample(range(0,100),10)

结果如下

csharp 复制代码
a
Out[3]: [17, 72, 97, 8, 32, 15, 63, 57, 60, 83]
b
Out[4]: [7, 11, 10, 46, 21, 94, 85, 39, 32, 77]
random.seed(1)//加载随机数种子
random.sample(range(0,100),10)
Out[6]: [17, 72, 97, 8, 32, 15, 63, 57, 60, 83]

可以看到out[6]之前加载了随机数种子1之后可以重现第一次随机数的生成结果

二、随机数种子在scikit-learn中的应用(以鸢尾花为例)

注:以下代码需要在你的环境中先行安装scikit-learn工具包

具体方法可以参考https://blog.csdn.net/quicmous/article/details/106824638

首先scikit-learn中鸢尾花的数据集需要我们进行拆分,将其拆分为训练集和测试集。在这里需要将原数据进行随机拆分:

csharp 复制代码
from sklearn import datasets
X=iris.data[:,[2,3]]
y=iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

X,y分别为原数据与标签,0.3指的是把X和y随机分为30%的测试数据和70%的训练数据

这里的随机数种子参数为random_state

在未来想要重新获取X_train, X_test, y_train, y_test的时候可以再次调用以下语句

csharp 复制代码
train_test_split(X, y, test_size=0.3, random_state=1)

例子:

csharp 复制代码
X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y, test_size=0.3, random_state=1)

检验新生成的数据和同样的随机数种子下生成的数据是否一样,可以自行运行程序发现是一样的

如果将random_state设置成1以外的数

csharp 复制代码
X_train2, X_test2, y_train2, y_test2 = train_test_split(X, y, test_size=0.3, random_state=2)

会发现结果不一样了

相关推荐
西猫雷婶17 小时前
CNN卷积计算
人工智能·神经网络·cnn
格林威18 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
倔强青铜三19 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
递归不收敛19 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
pytorch·学习·机器学习
B站计算机毕业设计之家19 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
高工智能汽车19 小时前
棱镜观察|极氪销量遇阻?千里智驾左手服务吉利、右手对标华为
人工智能·华为
IT森林里的程序猿19 小时前
基于机器学习方法的网球比赛胜负趋势预测
python·机器学习·django
txwtech19 小时前
第6篇 OpenCV RotatedRect如何判断矩形的角度
人工智能·opencv·计算机视觉
正牌强哥19 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
倔强青铜三20 小时前
苦练Python第62天:零基础玩转CSV文件读写,csv模块实战
人工智能·python·面试