【机器学习】scikit-learn机器学习中随机数种子的应用与重现

随机数种子是为了能重现某一次实验生成的随机数而设立的,相同的随机数种子下,生成的随机数序列一样

一、随机数种子基础应用

在python中简单运用随机数种子

csharp 复制代码
import random
random.seed(1)
a = random.sample(range(0,100),10)
random.seed(2)
b = random.sample(range(0,100),10)

结果如下

csharp 复制代码
a
Out[3]: [17, 72, 97, 8, 32, 15, 63, 57, 60, 83]
b
Out[4]: [7, 11, 10, 46, 21, 94, 85, 39, 32, 77]
random.seed(1)//加载随机数种子
random.sample(range(0,100),10)
Out[6]: [17, 72, 97, 8, 32, 15, 63, 57, 60, 83]

可以看到out[6]之前加载了随机数种子1之后可以重现第一次随机数的生成结果

二、随机数种子在scikit-learn中的应用(以鸢尾花为例)

注:以下代码需要在你的环境中先行安装scikit-learn工具包

具体方法可以参考https://blog.csdn.net/quicmous/article/details/106824638

首先scikit-learn中鸢尾花的数据集需要我们进行拆分,将其拆分为训练集和测试集。在这里需要将原数据进行随机拆分:

csharp 复制代码
from sklearn import datasets
X=iris.data[:,[2,3]]
y=iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

X,y分别为原数据与标签,0.3指的是把X和y随机分为30%的测试数据和70%的训练数据

这里的随机数种子参数为random_state

在未来想要重新获取X_train, X_test, y_train, y_test的时候可以再次调用以下语句

csharp 复制代码
train_test_split(X, y, test_size=0.3, random_state=1)

例子:

csharp 复制代码
X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y, test_size=0.3, random_state=1)

检验新生成的数据和同样的随机数种子下生成的数据是否一样,可以自行运行程序发现是一样的

如果将random_state设置成1以外的数

csharp 复制代码
X_train2, X_test2, y_train2, y_test2 = train_test_split(X, y, test_size=0.3, random_state=2)

会发现结果不一样了

相关推荐
嘀咕博客5 分钟前
SafeEar:浙大和清华联合推出的AI音频伪造检测框架,错误率低至2.02%
人工智能·音视频·ai工具
Hello123网站5 分钟前
FinChat-金融领域的ChatGPT
人工智能·chatgpt·金融·ai工具
嘀咕博客10 分钟前
PixVerse -免费在线AI视频生成工具
人工智能·音视频·ai工具
mit6.82424 分钟前
[rStar] 解决方案节点 | `BaseNode` | `MCTSNode`
人工智能·python·算法
普蓝机器人32 分钟前
AutoTrack-IR-DR200底盘仿真详解:为教育领域打造的高效机器人学习实验平台
人工智能·学习·计算机视觉·机器人·移动机器人·三维仿真导航
赴3351 小时前
opencv 银行卡号识别案例
人工智能·opencv·计算机视觉·银行卡号识别
后端小肥肠1 小时前
公众号卡在 vs 漫画赛道?Coze 一键出稿:输入标题就生成,小白也能冲 10w+
人工智能·aigc·coze
微盛AI企微管家1 小时前
企业微信AI功能升级:选对企业微信服务商协助四大AI场景落地
大数据·人工智能·企业微信
eqwaak01 小时前
科技信息差(9.10)
网络·人工智能·分布式·ar·智能硬件
虫无涯1 小时前
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
人工智能