【机器学习】scikit-learn机器学习中随机数种子的应用与重现

随机数种子是为了能重现某一次实验生成的随机数而设立的,相同的随机数种子下,生成的随机数序列一样

一、随机数种子基础应用

在python中简单运用随机数种子

csharp 复制代码
import random
random.seed(1)
a = random.sample(range(0,100),10)
random.seed(2)
b = random.sample(range(0,100),10)

结果如下

csharp 复制代码
a
Out[3]: [17, 72, 97, 8, 32, 15, 63, 57, 60, 83]
b
Out[4]: [7, 11, 10, 46, 21, 94, 85, 39, 32, 77]
random.seed(1)//加载随机数种子
random.sample(range(0,100),10)
Out[6]: [17, 72, 97, 8, 32, 15, 63, 57, 60, 83]

可以看到out[6]之前加载了随机数种子1之后可以重现第一次随机数的生成结果

二、随机数种子在scikit-learn中的应用(以鸢尾花为例)

注:以下代码需要在你的环境中先行安装scikit-learn工具包

具体方法可以参考https://blog.csdn.net/quicmous/article/details/106824638

首先scikit-learn中鸢尾花的数据集需要我们进行拆分,将其拆分为训练集和测试集。在这里需要将原数据进行随机拆分:

csharp 复制代码
from sklearn import datasets
X=iris.data[:,[2,3]]
y=iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

X,y分别为原数据与标签,0.3指的是把X和y随机分为30%的测试数据和70%的训练数据

这里的随机数种子参数为random_state

在未来想要重新获取X_train, X_test, y_train, y_test的时候可以再次调用以下语句

csharp 复制代码
train_test_split(X, y, test_size=0.3, random_state=1)

例子:

csharp 复制代码
X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y, test_size=0.3, random_state=1)

检验新生成的数据和同样的随机数种子下生成的数据是否一样,可以自行运行程序发现是一样的

如果将random_state设置成1以外的数

csharp 复制代码
X_train2, X_test2, y_train2, y_test2 = train_test_split(X, y, test_size=0.3, random_state=2)

会发现结果不一样了

相关推荐
沉下心来学鲁班5 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k6 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr15 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202427 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食31 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
北京搜维尔科技有限公司1 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域1 小时前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr1 小时前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆1 小时前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
云起无垠2 小时前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型