深度学习知识点总结

关于bn层

mean,std 第i个元素就是第i个通道上全部batch张输出特征图所有元素的平均值和方差,所shape就是特征图shape
可学习参数 weight和bias分别对应 γ,β.有bn时cov可以不用bia

在训练过程中,mean和std是统计得到的,然后在迭代过程中动态累加,m*si-1+(1-m)*si,m为历史保留比,对应pytorch的momenta参数,test过程中使用训练过程的统计结果

关于计算量(FLOPs)和参数量(Params)

flops :乘加次数,计算量对应时间复杂度

例如:
f l o p s c o v = h ∗ w ∗ k 2 ∗ c i n ∗ c o u t f l o p s d o w n s a m p l e = 0 f l o p s f c = w e i g h t i n ∗ w e i g h t o u t flops_{cov} = h*w*k^2*c_{in}*c_{out}\newline flops_{downsample} = 0\newline flops_{fc} = weight_{in}*weight_{out} flopscov=h∗w∗k2∗cin∗coutflopsdownsample=0flopsfc=weightin∗weightout
params :参数量对应于我们之前的空间复杂度,参数量影响显存
p a r a m s c o v = k 2 ∗ c i n ∗ c o u t p a r a m s d o w n s a m p l e = 0 p a r a m s f c = w e i g h t i n ∗ w e i g h t o u t params_{cov} = k^2*c_{in}*c_{out}\newline params_{downsample} = 0\newline params_{fc} = weight_{in}*weight_{out} paramscov=k2∗cin∗coutparamsdownsample=0paramsfc=weightin∗weightout
显存=模型自身的参数(params)+模型计算产生的中间变量(memory)

相关推荐
IT_陈寒3 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
逛逛GitHub4 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心4 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
CoovallyAIHub5 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub5 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
aneasystone本尊6 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒7 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊17 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三17 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯18 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能