深度学习知识点总结

关于bn层

mean,std 第i个元素就是第i个通道上全部batch张输出特征图所有元素的平均值和方差,所shape就是特征图shape
可学习参数 weight和bias分别对应 γ,β.有bn时cov可以不用bia

在训练过程中,mean和std是统计得到的,然后在迭代过程中动态累加,m*si-1+(1-m)*si,m为历史保留比,对应pytorch的momenta参数,test过程中使用训练过程的统计结果

关于计算量(FLOPs)和参数量(Params)

flops :乘加次数,计算量对应时间复杂度

例如:
f l o p s c o v = h ∗ w ∗ k 2 ∗ c i n ∗ c o u t f l o p s d o w n s a m p l e = 0 f l o p s f c = w e i g h t i n ∗ w e i g h t o u t flops_{cov} = h*w*k^2*c_{in}*c_{out}\newline flops_{downsample} = 0\newline flops_{fc} = weight_{in}*weight_{out} flopscov=h∗w∗k2∗cin∗coutflopsdownsample=0flopsfc=weightin∗weightout
params :参数量对应于我们之前的空间复杂度,参数量影响显存
p a r a m s c o v = k 2 ∗ c i n ∗ c o u t p a r a m s d o w n s a m p l e = 0 p a r a m s f c = w e i g h t i n ∗ w e i g h t o u t params_{cov} = k^2*c_{in}*c_{out}\newline params_{downsample} = 0\newline params_{fc} = weight_{in}*weight_{out} paramscov=k2∗cin∗coutparamsdownsample=0paramsfc=weightin∗weightout
显存=模型自身的参数(params)+模型计算产生的中间变量(memory)

相关推荐
User_芊芊君子6 分钟前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|9 分钟前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑17 分钟前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann
梦帮科技18 分钟前
Node.js配置生成器CLI工具开发实战
前端·人工智能·windows·前端框架·node.js·json
程序员泠零澪回家种桔子19 分钟前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC223722 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.32 分钟前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派33 分钟前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追34 分钟前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能
2601_9495936539 分钟前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能