线性代数 --- 为什么LU分解中的下三角矩阵L的主对角线上都是1?

为什么LU分解中的下三角矩阵L的主对角线上都是1?

笔者的一些话:

为什么LU分解中L矩阵的主对角线上都是1?因为最近一段时间在研究LU分解的编程实现,这个问题也就时不时的从我脑子里面冒出来。但大多时候都是一闪而过,没有太在意。有时候,查了一些资料后,明白了,或者是当时明白了,又或者是似乎明白了,没过多久又忘了。索性趁着这两天有空,干脆写一篇CSDN记录下来,自己以后要看了,就回来翻翻。

正文:

一方面: 对于LU分解而言,下三角阵L是对高斯消元过程的记录,是高斯消元的逆过程,是多个消元矩阵E的逆矩阵的乘积(形如下图中的下三角矩阵),即:

另一方面: 根据矩阵的乘法原则,两个矩阵A和B的乘积C中的元素,来自于矩阵A中第i行元素与矩阵B中第j列元素的乘积。下图,是我引用的维基百科中一个4x2矩阵A和一个2x4矩阵B的乘法的说明图。

如图,在本例中矩阵C中的元素源自于矩阵A第一行和矩阵B第二列的乘积。

按照这个乘法规则,去计算一系列消元矩阵的逆矩阵(方阵)的乘法就会发现。在计算L矩阵中主对角线上元素时,其他部分的乘积都是0,最终只剩下主对角线上对应位置的乘积为1。

比如说,下面是两个4x4的矩阵的乘法(X和Y可以是任意值):

不论这两个矩阵中的X和Y是多少,主对角线上的元素一定是1。我们以的计算为例(其他也相仿),他等于前一个矩阵的第2行,乘以后一个矩阵的第2列:

依此类推,则不论有多少个 连续相乘,一定能保证在最终的乘积L矩阵中,主对角线上的元素都是1。


(全文完)

作者 --- 松下J27

参考文献(鸣谢):

1,https://en.wikipedia.org/wiki/Matrix_multiplication

2,线性代数 --- LU分解(Gauss消元法的矩阵表示)_矩阵的lu分解-CSDN博客

(配图与本文无关)

**版权声明:**所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

相关推荐
Gyoku Mint40 分钟前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
纪元A梦42 分钟前
分布式拜占庭容错算法——PBFT算法深度解析
java·分布式·算法
px不是xp1 小时前
山东大学算法设计与分析复习笔记
笔记·算法·贪心算法·动态规划·图搜索算法
Bruce_Liuxiaowei2 小时前
文件上传漏洞深度解析:检测与绕过技术矩阵
安全·矩阵·文件上传漏洞
枫景Maple2 小时前
LeetCode 2297. 跳跃游戏 VIII(中等)
算法·leetcode
鑫鑫向栄2 小时前
[蓝桥杯]修改数组
数据结构·c++·算法·蓝桥杯·动态规划
鑫鑫向栄2 小时前
[蓝桥杯]带分数
数据结构·c++·算法·职场和发展·蓝桥杯
小wanga3 小时前
【递归、搜索与回溯】专题三 穷举vs暴搜vs回溯vs剪枝
c++·算法·机器学习·剪枝
天宫风子3 小时前
线性代数小述(一)
线性代数·算法·矩阵·抽象代数