【Python机器学习】决策树的优缺点

控制决策树模型复杂度的参数是预剪枝参数,它在树完全展开之前停止树的构造。

决策树的优点:

1、得到的模型很容易可视化

2、算法完全不受数据缩放的影响

决策树算法不需要特征预处理,比如归一化或标准化。特别是特征的尺度完全不一样时或二元特征和连续特征同时存在时,决策树的效果很好。

决策树的缺点是,即使做了预剪枝,它也经常过拟合,泛化性能很差,所以大多数应用中,往往使用集成方法来替代单颗决策树。

相关推荐
递归不收敛12 分钟前
专属虚拟环境:Hugging Face数据集批量下载(无登录+国内加速)完整指南
人工智能·笔记·git·python·学习·pycharm
我是小邵14 分钟前
主流数据分析工具全景对比:Excel / Python / R / Power BI / Tableau / Qlik / Snowflake
python·数据分析·excel
Yolo566Q1 小时前
Python驱动的无人机生态三维建模与碳储/生物量/LULC估算全流程实战技术
开发语言·python·无人机
qq_271581791 小时前
Ubuntu OpenCV C++ 获取Astra Pro摄像头图像
人工智能·opencv·计算机视觉
电鱼智能的电小鱼1 小时前
基于电鱼 ARM 工控机的井下AI故障诊断方案——让煤矿远程监控更智能、更精准
网络·arm开发·人工智能·算法·边缘计算
拉姆哥的小屋2 小时前
时间序列早期分类中的置信度累积问题:从ECE-C到时序依赖建模
大数据·人工智能
新手村领路人2 小时前
关于jupyter Notebook
ide·python·jupyter
蚁巡信息巡查系统2 小时前
政府网站与政务新媒体监测服务主要是做什么的?
大数据·人工智能
林恒smileZAZ2 小时前
移动端h5适配方案
人工智能·python·tensorflow
伟贤AI之路2 小时前
开源!纯 HTML 实现支持 0.75~2× 变速、iOS 熄屏防中断的英语点读站
人工智能·ai编程