【Python机器学习】决策树的优缺点

控制决策树模型复杂度的参数是预剪枝参数,它在树完全展开之前停止树的构造。

决策树的优点:

1、得到的模型很容易可视化

2、算法完全不受数据缩放的影响

决策树算法不需要特征预处理,比如归一化或标准化。特别是特征的尺度完全不一样时或二元特征和连续特征同时存在时,决策树的效果很好。

决策树的缺点是,即使做了预剪枝,它也经常过拟合,泛化性能很差,所以大多数应用中,往往使用集成方法来替代单颗决策树。

相关推荐
kszlgy2 小时前
Day 52 神经网络调参指南
python
wrj的博客3 小时前
python环境安装
python·学习·环境配置
康康的AI博客4 小时前
腾讯王炸:CodeMoment - 全球首个产设研一体 AI IDE
ide·人工智能
中达瑞和-高光谱·多光谱4 小时前
中达瑞和LCTF:精准调控光谱,赋能显微成像新突破
人工智能
mahtengdbb14 小时前
【目标检测实战】基于YOLOv8-DynamicHGNetV2的猪面部检测系统搭建与优化
人工智能·yolo·目标检测
Pyeako4 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
清 澜4 小时前
大模型面试400问第一部分第一章
人工智能·大模型·大模型面试
不大姐姐AI智能体5 小时前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
摘星编程5 小时前
OpenHarmony环境下React Native:Geolocation地理围栏
python