transforms图像增强(二)

一、图像变换

1、transforms.Pad

transforms.Pad是一个用于对图像边缘进行填充的数据转换操作。

参数:

  • padding:设置填充大小。可以是单个整数,表示在上下左右四个方向上均填充相同数量的像素;也可以是一个包含两个整数的元组 (a, b),表示在上下方向上填充 b 个像素,在左右方向上填充 a 个像素;还可以是一个包含四个整数的元组 (a, b, c, d),分别表示在左、上、右、下四个方向上填充 a, b, c, d 个像素。
  • padding_mode:填充模式,有四种模式可选:
    • 'constant':使用常数填充,填充值由 fill 参数指定。
    • 'edge':使用图像边缘像素进行填充。
    • 'reflect':使用图像边缘像素的镜像进行填充。
    • 'symmetric':使用图像边缘像素的对称像素进行填充。
  • fill:当 padding_mode'constant' 时,设置填充的像素值。可以是一个包含三个整数的元组 (R, G, B) 表示彩色图像的填充值,或者是一个整数表示灰度图像的填充值。
    使用transforms.Pad可以在图像的边缘进行填充,以增加图像的尺寸或保持图像的大小不变。

示例:

python 复制代码
import torchvision.transforms as transforms
transform = transforms.Compose([
    transforms.Pad(padding=2, fill=(255, 0, 0), padding_mode='constant')
])
# 对图像进行填充
padded_image = transform(image)

在上面的示例中,transforms.Pad(padding=2, fill=(255, 0, 0), padding_mode='constant')将图像的边缘填充了2个像素,填充的像素值为红色 (255, 0, 0)。填充模式为 'constant',表示使用常数填充。

注意:填充操作通常在图像预处理阶段使用,以确保所有图像具有相同的尺寸或符合模型的输入要求。填充后的图像尺寸会增加,因此在应用填充之前需要考虑好图像的尺寸和比例关系。

2、transforms.ColorJitter

transforms.ColorJitter是一个用于调整图像亮度、对比度、饱和度和色相的数据转换操作。

参数:

  • brightness:亮度调整因子。可以是单个浮点数 a,表示在范围 [max(0, 1-a), 1+a] 中随机选择亮度调整因子;也可以是一个包含两个浮点数的元组 (a, b),表示在范围 [a, b] 中选择亮度调整因子。
  • contrast:对比度参数,与亮度调整因子的使用方式相同。
  • saturation:饱和度参数,与亮度调整因子的使用方式相同。
  • hue:色相参数。可以是单个浮点数 a,表示在范围 [-a, a] 中选择色相调整参数,注意 0 <= a <= 0.5;也可以是一个包含两个浮点数的元组 (a, b),表示在范围 [a, b] 中选择色相调整参数,注意 -0.5 <= a <= b <= 0.5
    使用transforms.ColorJitter可以对图像进行亮度、对比度、饱和度和色相的随机调整,增加图像的多样性。
    示例:
python 复制代码
import torchvision.transforms as transforms
transform = transforms.Compose([
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1)
])
# 对图像进行颜色调整
adjusted_image = transform(image)

在上面的示例中,transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1)将图像的亮度、对比度、饱和度和色相进行了随机调整,亮度调整因子在范围 [0.8, 1.2] 内随机选择,对比度调整因子在范围 [0.8, 1.2] 内随机选择,饱和度调整因子在范围 [0.8, 1.2] 内随机选择,色相调整参数在范围 [-0.1, 0.1] 内随机选择。

注意:颜色调整操作通常在图像增强和数据增强阶段使用,以增加模型对不同光照、对比度和饱和度等条件的鲁棒性。调整后的图像将具有不同的颜色外观,可以增加数据集的多样性。

3、transforms.RandomGrayscale

transforms.RandomGrayscaletransforms.Grayscale都是用于将图像转换为灰度图的数据转换操作。

transforms.RandomGrayscale是一个随机操作,根据给定的概率将图像转换为灰度图。

  • num_output_channels:输出通道数。可以是1或3。如果设置为1,则输出的灰度图像只有一个通道;如果设置为3,则输出的灰度图像会复制到三个通道,以便与彩色图像的通道数匹配。
  • p:概率值,表示图像被转换为灰度图的概率。取值范围为0到1之间,例如,设置为0.1表示有10%的概率将图像转换为灰度图。
    使用transforms.RandomGrayscale可以在数据增强过程中以一定的概率将图像转换为灰度图,增加数据集的多样性。
    示例:
python 复制代码
import torchvision.transforms as transforms
transform = transforms.Compose([
    transforms.RandomGrayscale(num_output_channels=1, p=0.5)
])
# 对图像进行随机灰度转换
grayscale_image = transform(image)

在上面的示例中,transforms.RandomGrayscale(num_output_channels=1, p=0.5)以50%的概率将图像转换为灰度图,输出的灰度图像只有一个通道。

4、transforms.Grayscale

transforms.Grayscale是一个确定性操作,将图像转换为灰度图。

  • num_output_channels:输出通道数。可以是1或3。如果设置为1,则输出的灰度图像只有一个通道;如果设置为3,则输出的灰度图像会复制到三个通道,以便与彩色图像的通道数匹配。
    示例:
python 复制代码
import torchvision.transforms as transforms
transform = transforms.Compose([
    transforms.Grayscale(num_output_channels=1)
])
# 将图像转换为灰度图
grayscale_image = transform(image)

在上面的示例中,transforms.Grayscale(num_output_channels=1)将图像转换为灰度图,输出的灰度图像只有一个通道。

注意:灰度图像只有一个通道,每个像素的值表示灰度级别。与彩色图像相比,灰度图像的信息量较少,但在某些场景中可以提供更加简洁和高效的特征表示。

5、transforms.RandomAffine

transforms.RandomAffine是一个用于对图像进行随机仿射变换的数据转换操作。

参数:

  • degrees:旋转角度范围。可以是一个单个的浮点数 a,表示在范围 [-a, a] 内随机选择旋转角度;也可以是一个包含两个浮点数的元组 (a, b),表示在范围 [a, b] 内随机选择旋转角度。
  • translate:平移区间设置。可以是一个包含两个浮点数的元组 (a, b),表示在宽度和高度维度上分别设置平移的区间。例如,如果设置为 (0.1, 0.1),则图像在宽度维度上的平移区间为 [-img_width * 0.1, img_width * 0.1],在高度维度上的平移区间为 [-img_height * 0.1, img_height * 0.1]
  • scale:缩放比例。可以是一个单个的浮点数 a,表示在范围 [1-a, 1+a] 内随机选择缩放比例;也可以是一个包含两个浮点数的元组 (a, b),表示在范围 [1-a, 1+b] 内随机选择缩放比例。缩放比例是以图像面积为单位的。
  • shear:错切角度范围。可以是一个单个的浮点数 a,表示在范围 [-a, a] 内随机选择错切角度;也可以是一个包含两个浮点数的元组 (a, b),表示在范围 [a, b] 内随机选择错切角度。
  • resample:是否使用重采样方法。默认为 False,表示不使用重采样方法,采用最近邻插值;如果设置为 True,则使用双线性插值进行重采样。
  • fillcolor:填充颜色设置。可以是一个整数值,表示填充的颜色。
    使用transforms.RandomAffine可以对图像进行随机的仿射变换,包括旋转、平移、缩放、错切和翻转等操作,增加图像的多样性。
    示例:
python 复制代码
import torchvision.transforms as transforms
transform = transforms.Compose([
    transforms.RandomAffine(degrees=10, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=10)
])
# 对图像进行随机仿射变换
transformed_image = transform(image)

在上面的示例中,transforms.RandomAffine(degrees=10, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=10)将对图像进行随机的仿射变换,旋转角度在范围 [-10, 10] 内随机选择,平移区间设置为 (0.1, 0.1),缩放比例在范围 [0.9, 1.1] 内随机选择,错切角度在范围 [-10, 10] 内随机选择。

注意:仿射变换是二维的线性变换,由旋转、平移、缩放、错切和翻转等基本原子变换构成。通过对图像进行随机的仿射变换,可以增加数据集的多样性,提高模型的鲁棒性。


6、transforms.RandomErasing

transforms.RandomErasing是一个用于对图像进行随机遮挡的数据转换操作。

参数:

  • p:执行该操作的概率。默认为0.5,表示有50%的概率执行该操作。
  • scale:遮挡区域的面积范围。可以是一个包含两个浮点数的元组 (a, b),表示遮挡区域的面积为原图面积的 [a, b] 之间的随机比例。
  • ratio:遮挡区域的长宽比范围。可以是一个包含两个浮点数的元组 (a, b),表示遮挡区域的长宽比为 [a, b] 之间的随机比例。
  • value:设置遮挡区域的像素值。可以是一个整数或一个包含3个整数的元组 (R, G, B),表示遮挡区域的像素值为指定的颜色;也可以是一个整数,表示遮挡区域为灰度图像,像素值为指定的灰度值。
  • inplace:是否原地操作。默认为 False,表示返回一个新的遮挡后的图像;如果设置为 True,则在原图像上进行原地操作。
    使用transforms.RandomErasing可以在训练过程中随机遮挡图像的一部分,以增强模型对遮挡和噪声的鲁棒性。
    示例:
python 复制代码
import torchvision.transforms as transforms
transform = transforms.Compose([
    transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3))
])
# 对图像进行随机遮挡
transformed_image = transform(image)

在上面的示例中,transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3))将以50%的概率对图像进行随机遮挡,遮挡区域的面积在原图面积的 [0.02, 0.33] 之间随机选择,遮挡区域的长宽比在 [0.3, 3.3] 之间随机选择。

注意:随机遮挡可以模拟真实世界中的遮挡和噪声情况,以增加数据集的多样性。这有助于提高模型的鲁棒性和泛化能力。

7、transforms.Lambda

transforms.Lambda是一个用于用户自定义lambda方法的数据转换操作。

参数:

  • lambd:lambda匿名函数,用于定义自定义的数据转换操作。
    使用transforms.Lambda可以通过lambda表达式定义自己的数据转换操作。lambda表达式是一种匿名函数,可以在一行代码中定义简单的函数功能。
    示例:
python 复制代码
import torchvision.transforms as transforms
# 定义一个lambda函数,将输入的图像进行裁剪
crop_lambda = transforms.Lambda(lambda x: x.crop((10, 10, 100, 100)))
# 使用lambda函数进行图像裁剪
transformed_image = crop_lambda(image)

在上面的示例中,transforms.Lambda(lambda x: x.crop((10, 10, 100, 100)))定义了一个lambda函数,该函数接受一个输入参数 x,并对其进行裁剪操作。然后,通过将图像 image 传递给 crop_lambda,可以使用lambda函数对图像进行裁剪。

注意:transforms.Lambda提供了一种灵活的方式来自定义数据转换操作,可以根据需求定义任何自己想要的函数功能。

相关推荐
QQ_7781329744 分钟前
基于云计算的资源管理系统
人工智能·云计算
伊一大数据&人工智能学习日志9 分钟前
OpenCV计算机视觉 01 图像与视频的读取操作&颜色通道
人工智能·opencv·计算机视觉
soulteary24 分钟前
使用 AI 辅助开发一个开源 IP 信息查询工具:一
人工智能·tcp/ip·开源·ip 查询
爱补鱼的猫猫30 分钟前
2、Bert论文笔记
论文阅读·人工智能·bert
起名字什么的好难1 小时前
conda虚拟环境安装pytorch gpu版
人工智能·pytorch·conda
18号房客1 小时前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
百家方案1 小时前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
云起无垠1 小时前
“AI+Security”系列第4期(一)之“洞” 见未来:AI 驱动的漏洞挖掘新范式
人工智能
QQ_7781329742 小时前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
清 晨2 小时前
Web3 生态全景:创新与发展之路
人工智能·web3·去中心化·智能合约