C2-3.3.3 迁移学习

C2-3.3.3 迁移学习

1、为什么要使用-迁移学习

和 "数据增强" [C2-3.3.2 数据增强.md](C2-3.3.2 数据增强.md) 相比, 有一些应用程序没有那么多数据 ,而且 很难获取到更多的数据 ------"迁移学习 " 诞生

迁移学习 在实际的应用中使用的很频繁,非常受欢迎

2、迁移学习举例

我们这里已经有一个成熟的模型,进行1000个类别分类。分成:猫、狗、车、人... 。 但是我们想要一个能实现手写体识别的模型,但是我们手里的数据很少,比如有50个吧(也不能实现数据增强)。有两种方法能实现:

  • 方法一 - 迁移学习:把人家预训练好的模型拿过来: 除了最后一层输出层以外留下所有层的参数 w , b 。 把输出层换成一个 比较小的有10个神经元的输出层(因为有10种结果的判别,簇类)。通过我们手里有的50个 手写体数据,对模型进行训练,只训练输出层的参数。
  • 方法二-传统的方法:需要很大的数据集,从头到尾进行训练

3、为什么迁移学习能胜任这份工作呢

因为在前几层 隐藏层中 做的功能都是差不多的,只不过是后面的输出层 有一些不同(有可能有时倒数几层开始不同)

4、迁移学习 总结 / 步骤

【※注释】:必须是同一个输入类型

相关推荐
冰西瓜6001 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术1 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技1 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路2 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟2 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆2 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站2 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats3 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星3 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器3 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游