【MATLAB】VMD_LSTM神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

变分模态分解(Variational Mode Decomposition,VMD)和LSTM(Long Short-Term Memory)神经网络结合的算法是一种用于处理时间序列预测的方法。

VMD是一种自适应信号分解方法,能够将复杂信号分解为多个固有模态函数(Intrinsic Mode Function,IMF),并精确地恢复原始信号。通过使用VMD,可以有效地提取时间序列中的复杂模式和趋势,为后续的预测提供更准确的数据表示。

LSTM是一种深度学习模型,特别适合处理具有长期依赖关系的时间序列数据。LSTM通过引入记忆单元,可以学习并记住历史信息,使得模型在进行时间序列预测时能够考虑到长时间范围内的模式和趋势。

VMD-LSTM算法结合了VMD和LSTM的优势,首先使用VMD对原始时间序列进行分解,得到一系列固有模态函数(IMF)和一个残差项。然后,将这些IMF作为LSTM的输入,利用LSTM模型进行训练和预测。通过构建多个独立的LSTM模型,每个模型都可以从不同的角度学习时间序列的特征,提高预测的准确性和稳定性。

VMD-LSTM算法的优势在于能够处理非线性、非平稳的时间序列数据,并能够学习到时间序列中的长期依赖关系。VMD能够准确地提取时间序列中的复杂模式和趋势,为LSTM提供更准确的输入数据。而LSTM能够学习到这些模式和趋势的长期依赖关系,进一步提高预测的准确性和稳定性。

在实际应用中,VMD-LSTM算法可以应用于各种领域,如金融市场预测、气象预报、能源消耗预测等。然而,该算法也存在一些局限性,例如计算复杂度高、需要大量数据等。因此,在使用该算法时需要根据实际需求进行适当的调整和优化。

2 出图效果

附出图效果如下:

相关推荐
人机与认知实验室5 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
Evand J5 小时前
LOS/NLOS环境建模与三维TOA定位,MATLAB仿真程序,可自定义锚点数量和轨迹点长度
开发语言·matlab
孤亭远见9 小时前
COMSOL with Matlab
matlab
图南楠12 小时前
simulink离散传递函数得到差分方程并用C语言实现
matlab
落魄君子12 小时前
ELM分类-单隐藏层前馈神经网络(Single Hidden Layer Feedforward Neural Network, SLFN)
神经网络·分类·数据挖掘
信号处理学渣12 小时前
matlab画图,选择性显示legend标签
开发语言·matlab
是Dream呀14 小时前
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
网络·python·神经网络
机器学习之心1 天前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
叶庭云1 天前
Matlab 和 R 语言的数组索引都是从 1 开始,并且是左闭右闭的
matlab·编程语言·r·数组索引·从 1 开始
γ..1 天前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频