【Python机器学习】SVM——线性模型与非线性特征

SVM(核支持向量机)是一种监督学习模型,是可以推广到更复杂模型的扩展,这些模型无法被输入空间的超平面定义。

线模型在低维空间中可能非常受限,因为线和平面的灵活性有限,但是有一种方式可以让线性模型更加灵活,那就是添加更多特征,比如输入特征的交互式或多项式。

以下面的数据集为例:

python 复制代码
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
line_svc=LinearSVC().fit(X,y)

mglearn.plots.plot_2d_separator(line_svc,X)
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

用于分类的线性模型只能用一条直线来划分数据点,对这个数据集无法给出较好的结果。

现在,对输入特征进行扩展,比如添加一个特征的平方作为一个新特征,那么每个数据点可以表示为三维点,而不是二维点,这样就可以做一个新的三维散点图:

python 复制代码
import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3d

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
#line_svc=LinearSVC().fit(X,y)
X_new=np.hstack([X,X[:,1:]**2])
figure=plt.figure()

#3D可视化
ax=figure.add_subplot(projection='3d')
#首先画出所有y==0,然后画出所有y==1的点
mask=y==0

ax.scatter(X_new[mask,0],X_new[mask,1],X_new[mask,2],c='blue',marker='o',cmap=mglearn.cm2,s=60)
ax.scatter(X_new[~mask,0],X_new[~mask,1],X_new[~mask,2],c='red',marker='^',cmap=mglearn.cm2,s=60)
ax.set_xlabel('特征0')
ax.set_ylabel('特征1')
ax.set_zlabel('特征1**2')
plt.show()

在数据新的可视化中,可以用线性模型(三维平面将这两个类别区分开)

python 复制代码
import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3d

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
X_new=np.hstack([X,X[:,1:]**2])
line_svc_3d=LinearSVC().fit(X_new,y)
coef,intercept=line_svc_3d.coef_.ravel(),line_svc_3d.intercept_

figure=plt.figure()

#3D可视化
ax=figure.add_subplot(projection='3d')
#首先画出所有y==0,然后画出所有y==1的点
xx=np.linspace(X_new[:,0].min()-2,X_new[:,0].max()+2,50)
yy=np.linspace(X_new[:,1].min()-2,X_new[:,1].max()+2,50)
XX,YY=np.meshgrid(xx,yy)
ZZ=(coef[0]*XX+coef[1]*YY+intercept)/-coef[2]
mask=y==0
ax.plot_surface(XX,YY,ZZ,rstride=8,cstride=8,alpha=0.3)
ax.scatter(X_new[mask,0],X_new[mask,1],X_new[mask,2],c='blue',marker='o',cmap=mglearn.cm2,s=60)
ax.scatter(X_new[~mask,0],X_new[~mask,1],X_new[~mask,2],c='red',marker='^',cmap=mglearn.cm2,s=60)
ax.set_xlabel('特征0')
ax.set_ylabel('特征1')
ax.set_zlabel('特征1**2')
plt.show()

如果将线性SVM模型看做原始特征的函数,那么它实际上已经不是线性的了,它不再是一条直线,而是一个椭圆:

python 复制代码
import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3d

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
X_new=np.hstack([X,X[:,1:]**2])
line_svc_3d=LinearSVC().fit(X_new,y)
coef,intercept=line_svc_3d.coef_.ravel(),line_svc_3d.intercept_
xx=np.linspace(X_new[:,0].min()-2,X_new[:,0].max()+2,50)
yy=np.linspace(X_new[:,1].min()-2,X_new[:,1].max()+2,50)
XX,YY=np.meshgrid(xx,yy)
ZZ=YY**2

dec=line_svc_3d.decision_function(np.c_[XX.ravel(),YY.ravel(),ZZ.ravel()])
plt.contourf(XX,YY,dec.reshape(XX.shape),levels=[dec.min(),0,dec.max()],cmap=mglearn.cm2,alpha=0.5)
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()
相关推荐
查士丁尼·绵2 小时前
面试-字符串1
python
好评笔记2 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云2 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
小兜全糖(xdqt)3 小时前
python中单例模式
开发语言·python·单例模式
Python数据分析与机器学习3 小时前
python高级加密算法AES对信息进行加密和解密
开发语言·python
noravinsc3 小时前
python md5加密
前端·javascript·python
唯余木叶下弦声3 小时前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark
程序媛徐师姐4 小时前
Python基于Django的社区爱心养老管理系统设计与实现【附源码】
python·django·社区爱心养老·社区爱心养老管理系统·python社区养老管理系统·社区养老·社区养老管理系统
叫我:松哥4 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
Le0v1n4 小时前
VSCode注释高亮(# NOTE;# TODO;# FIXME;#XXX;# HACK;# BUG)
ide·vscode·python