mathglm代码调试记录

数据集格式:

读取数据集代码:

python 复制代码
def make_loaders(args, create_dataset_function):
    """makes training/val/test
    Args:
        args.train_data, args.valid_data, args.test_data: str. Paths to the dataset.
        args.split: str. format: "8,1,1". how to split train_data.
        args.dataset_type: use to create the right datasets. 
    """
    make_dataset = partial(make_dataset_full, 
                        create_dataset_function=create_dataset_function)

    world_size = torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
    batch_size = args.batch_size * world_size
    eval_batch_size = batch_size
    if args.eval_batch_size is not None:
        eval_batch_size = args.eval_batch_size * world_size
    
    split = get_split(args)

    data_set_args = {
        'path': args.train_data,
        'split': split,
    }

    eval_set_args = copy.copy(data_set_args)
    eval_set_args['split'] = [1.]
    
    # make datasets splits and tokenizer
    train = None
    valid = None
    test = None

    if args.train_data is not None:
        train = make_dataset(**data_set_args, args=args, dataset_weights=args.train_data_weights, is_train_data=True)
        if should_split(split):
            train, valid, test = train

    # make training and val dataset if necessary
    if valid is None and args.valid_data is not None:
        eval_set_args['path'] = args.valid_data
        valid = make_dataset(**eval_set_args, args=args, random_mapping=not args.strict_eval)
    if test is None and args.test_data is not None:
        eval_set_args['path'] = args.test_data
        test = make_dataset(**eval_set_args, args=args, random_mapping=not args.strict_eval)

    # wrap datasets with data loader
    if train is not None and args.batch_size > 0:
        train = make_data_loader(train, batch_size, args, split='train')
        args.do_train = True
    else:
        args.do_train = False
    eval_batch_size = eval_batch_size if eval_batch_size != 0 else batch_size
    if valid is not None:
        valid = make_data_loader(valid, eval_batch_size, args, split='val')
        args.do_valid = True
    else:
        args.do_valid = False
    if test is not None:
        test = make_data_loader(test, eval_batch_size, args, split='test')
        args.do_test = True
    else:
        args.do_test = False

    return train, valid, test

数据读取后:

/home/user/zjb/SAT/mathglm/continue_train_mathglm.py

get_batch(data_iterator, args, timers):# 传入参数data_iterator

continue_train_mathglm.py文件中,get_batch函数从data_iterator获取数据,然后将其转换为词向量。这是通过调用get_batch函数中的mpu.broadcast_data函数实现的。

然后,在forward_step函数中,get_batch函数的返回值被传递给模型。模型接收的输入是词向量,而不是原始的字符串。

这种转换是因为模型不能直接处理原始的文本数据。模型需要的是一种数值表示,通常是词向量,这样才能进行数学运算。因此,原始的字符串数据需要被转换为词向量。

create_dataset_function函数中,你可以看到这个转换过程。process_fn函数接收一个字符串row,然后使用tokenizer._encode(value)将其转换为词向量。这个词向量然后被添加到ids列表中,最后返回一个包含词向量的字典。

所以,data_iterator中的数据是字符串,因为这是原始的输入数据。然后,这些数据被转换为词向量,以便可以被模型处理。

其中data_iterator是dataloaderlter如图所示

data如图所示

data_b

mpu.broadcast_data(keys, data, datatype) 是一个函数调用,它来自于 SwissArmyTransformer 库中的 mpu 模块。这个函数的作用是在分布式环境中广播数据。

create_dataset_function函数在continue_train_mathglm.py文件中。这个函数用于创建一个数据集,它接收一个路径和参数,然后返回一个MathDataset对象。在这个函数中,它定义了一个process_fn函数,这个函数用于处理每一行数据,将其转换为词向量。

相关推荐
人工智能培训几秒前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
wenzhangli7几秒前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
后端小肥肠35 分钟前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
每日新鲜事42 分钟前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅1 小时前
对 AI Native 架构的一些思考
人工智能
LinQingYanga2 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip2 小时前
过去24小时AI创业趋势分析
人工智能
SEO_juper2 小时前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo
pp起床2 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习