mathglm代码调试记录

数据集格式:

读取数据集代码:

python 复制代码
def make_loaders(args, create_dataset_function):
    """makes training/val/test
    Args:
        args.train_data, args.valid_data, args.test_data: str. Paths to the dataset.
        args.split: str. format: "8,1,1". how to split train_data.
        args.dataset_type: use to create the right datasets. 
    """
    make_dataset = partial(make_dataset_full, 
                        create_dataset_function=create_dataset_function)

    world_size = torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
    batch_size = args.batch_size * world_size
    eval_batch_size = batch_size
    if args.eval_batch_size is not None:
        eval_batch_size = args.eval_batch_size * world_size
    
    split = get_split(args)

    data_set_args = {
        'path': args.train_data,
        'split': split,
    }

    eval_set_args = copy.copy(data_set_args)
    eval_set_args['split'] = [1.]
    
    # make datasets splits and tokenizer
    train = None
    valid = None
    test = None

    if args.train_data is not None:
        train = make_dataset(**data_set_args, args=args, dataset_weights=args.train_data_weights, is_train_data=True)
        if should_split(split):
            train, valid, test = train

    # make training and val dataset if necessary
    if valid is None and args.valid_data is not None:
        eval_set_args['path'] = args.valid_data
        valid = make_dataset(**eval_set_args, args=args, random_mapping=not args.strict_eval)
    if test is None and args.test_data is not None:
        eval_set_args['path'] = args.test_data
        test = make_dataset(**eval_set_args, args=args, random_mapping=not args.strict_eval)

    # wrap datasets with data loader
    if train is not None and args.batch_size > 0:
        train = make_data_loader(train, batch_size, args, split='train')
        args.do_train = True
    else:
        args.do_train = False
    eval_batch_size = eval_batch_size if eval_batch_size != 0 else batch_size
    if valid is not None:
        valid = make_data_loader(valid, eval_batch_size, args, split='val')
        args.do_valid = True
    else:
        args.do_valid = False
    if test is not None:
        test = make_data_loader(test, eval_batch_size, args, split='test')
        args.do_test = True
    else:
        args.do_test = False

    return train, valid, test

数据读取后:

/home/user/zjb/SAT/mathglm/continue_train_mathglm.py

get_batch(data_iterator, args, timers):# 传入参数data_iterator

continue_train_mathglm.py文件中,get_batch函数从data_iterator获取数据,然后将其转换为词向量。这是通过调用get_batch函数中的mpu.broadcast_data函数实现的。

然后,在forward_step函数中,get_batch函数的返回值被传递给模型。模型接收的输入是词向量,而不是原始的字符串。

这种转换是因为模型不能直接处理原始的文本数据。模型需要的是一种数值表示,通常是词向量,这样才能进行数学运算。因此,原始的字符串数据需要被转换为词向量。

create_dataset_function函数中,你可以看到这个转换过程。process_fn函数接收一个字符串row,然后使用tokenizer._encode(value)将其转换为词向量。这个词向量然后被添加到ids列表中,最后返回一个包含词向量的字典。

所以,data_iterator中的数据是字符串,因为这是原始的输入数据。然后,这些数据被转换为词向量,以便可以被模型处理。

其中data_iterator是dataloaderlter如图所示

data如图所示

data_b

mpu.broadcast_data(keys, data, datatype) 是一个函数调用,它来自于 SwissArmyTransformer 库中的 mpu 模块。这个函数的作用是在分布式环境中广播数据。

create_dataset_function函数在continue_train_mathglm.py文件中。这个函数用于创建一个数据集,它接收一个路径和参数,然后返回一个MathDataset对象。在这个函数中,它定义了一个process_fn函数,这个函数用于处理每一行数据,将其转换为词向量。

相关推荐
飞哥数智坊7 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三8 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯8 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet10 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算11 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心11 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar12 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai12 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI13 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear14 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp