mathglm代码调试记录

数据集格式:

读取数据集代码:

python 复制代码
def make_loaders(args, create_dataset_function):
    """makes training/val/test
    Args:
        args.train_data, args.valid_data, args.test_data: str. Paths to the dataset.
        args.split: str. format: "8,1,1". how to split train_data.
        args.dataset_type: use to create the right datasets. 
    """
    make_dataset = partial(make_dataset_full, 
                        create_dataset_function=create_dataset_function)

    world_size = torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
    batch_size = args.batch_size * world_size
    eval_batch_size = batch_size
    if args.eval_batch_size is not None:
        eval_batch_size = args.eval_batch_size * world_size
    
    split = get_split(args)

    data_set_args = {
        'path': args.train_data,
        'split': split,
    }

    eval_set_args = copy.copy(data_set_args)
    eval_set_args['split'] = [1.]
    
    # make datasets splits and tokenizer
    train = None
    valid = None
    test = None

    if args.train_data is not None:
        train = make_dataset(**data_set_args, args=args, dataset_weights=args.train_data_weights, is_train_data=True)
        if should_split(split):
            train, valid, test = train

    # make training and val dataset if necessary
    if valid is None and args.valid_data is not None:
        eval_set_args['path'] = args.valid_data
        valid = make_dataset(**eval_set_args, args=args, random_mapping=not args.strict_eval)
    if test is None and args.test_data is not None:
        eval_set_args['path'] = args.test_data
        test = make_dataset(**eval_set_args, args=args, random_mapping=not args.strict_eval)

    # wrap datasets with data loader
    if train is not None and args.batch_size > 0:
        train = make_data_loader(train, batch_size, args, split='train')
        args.do_train = True
    else:
        args.do_train = False
    eval_batch_size = eval_batch_size if eval_batch_size != 0 else batch_size
    if valid is not None:
        valid = make_data_loader(valid, eval_batch_size, args, split='val')
        args.do_valid = True
    else:
        args.do_valid = False
    if test is not None:
        test = make_data_loader(test, eval_batch_size, args, split='test')
        args.do_test = True
    else:
        args.do_test = False

    return train, valid, test

数据读取后:

/home/user/zjb/SAT/mathglm/continue_train_mathglm.py

get_batch(data_iterator, args, timers):# 传入参数data_iterator

continue_train_mathglm.py文件中,get_batch函数从data_iterator获取数据,然后将其转换为词向量。这是通过调用get_batch函数中的mpu.broadcast_data函数实现的。

然后,在forward_step函数中,get_batch函数的返回值被传递给模型。模型接收的输入是词向量,而不是原始的字符串。

这种转换是因为模型不能直接处理原始的文本数据。模型需要的是一种数值表示,通常是词向量,这样才能进行数学运算。因此,原始的字符串数据需要被转换为词向量。

create_dataset_function函数中,你可以看到这个转换过程。process_fn函数接收一个字符串row,然后使用tokenizer._encode(value)将其转换为词向量。这个词向量然后被添加到ids列表中,最后返回一个包含词向量的字典。

所以,data_iterator中的数据是字符串,因为这是原始的输入数据。然后,这些数据被转换为词向量,以便可以被模型处理。

其中data_iterator是dataloaderlter如图所示

data如图所示

data_b

mpu.broadcast_data(keys, data, datatype) 是一个函数调用,它来自于 SwissArmyTransformer 库中的 mpu 模块。这个函数的作用是在分布式环境中广播数据。

create_dataset_function函数在continue_train_mathglm.py文件中。这个函数用于创建一个数据集,它接收一个路径和参数,然后返回一个MathDataset对象。在这个函数中,它定义了一个process_fn函数,这个函数用于处理每一行数据,将其转换为词向量。

相关推荐
qzhqbb1 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨2 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041082 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌3 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭3 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246664 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k4 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫4 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班4 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型