【算法与数据结构】746、LeetCode使用最小花费爬楼梯

文章目录

所有的LeetCode题解索引,可以看这篇文章------【算法和数据结构】LeetCode题解

一、题目

二、解法

思路分析:本题可以从0阶或者1阶台阶开始,每次爬楼梯所需的花费是之前的花费dp[i]+从本层向上爬所需的cost[i] d p [ i ] + c o s t [ i ] dp[i]+cost[i] dp[i]+cost[i]。可能到达第i阶台阶的情况有两种:从第i-2阶台阶一次性爬两步;从第i-1阶台阶一次性爬一步。因为要找到最小的花费,可以知道动态数组的表达式为: d p [ i ] = m i n ( d p [ i − 2 ] + c o s t [ i − 2 ] , d p [ i − 1 ] + c o s t [ i − 1 ] ) dp[i] = min(dp[i-2]+cost[i-2],dp[i-1]+cost[i-1]) dp[i]=min(dp[i−2]+cost[i−2],dp[i−1]+cost[i−1])。

程序如下:

cpp 复制代码
class Solution {
public:
	int minCostClimbingStairs(vector<int>& cost) {
		vector<int> dp(cost.size() + 1);	// 楼顶
		dp[0] = 0;
		dp[1] = 0;
		for (int i = 2; i <= cost.size(); i++) {
			dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
		}
		return dp[cost.size()];
	}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n)。
  • 空间复杂度: O ( n ) O(n) O(n)。

三、完整代码

cpp 复制代码
# include <iostream>
# include <vector>
# include <algorithm>
using namespace std;

class Solution {
public:
	int minCostClimbingStairs(vector<int>& cost) {
		vector<int> dp(cost.size() + 1);	// 楼顶
		dp[0] = 0;
		dp[1] = 0;
		for (int i = 2; i <= cost.size(); i++) {
			dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
		}
		return dp[cost.size()];
	}
};

int main() {
	vector<int> cost = { 1, 100, 1, 1, 1, 100, 1, 1, 100, 1 };
	Solution s1;
	int result = s1.minCostClimbingStairs(cost);
	cout << result << endl;
	system("pause");
	return 0;
}

end

相关推荐
芜湖xin10 分钟前
【题解-洛谷】P1706 全排列问题
算法·dfs
曦月逸霜2 小时前
第34次CCF-CSP认证真题解析(目标300分做法)
数据结构·c++·算法
海的诗篇_3 小时前
移除元素-JavaScript【算法学习day.04】
javascript·学习·算法
自动驾驶小卡3 小时前
A*算法实现原理以及实现步骤(C++)
算法
Unpredictable2223 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
编程绿豆侠3 小时前
力扣HOT100之多维动态规划:1143. 最长公共子序列
算法·leetcode·动态规划
珂朵莉MM3 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
fail_to_code4 小时前
递归法的递归函数何时需要返回值
算法
C137的本贾尼4 小时前
(每日一道算法题)二叉树剪枝
算法·机器学习·剪枝