【算法与数据结构】746、LeetCode使用最小花费爬楼梯

文章目录

所有的LeetCode题解索引,可以看这篇文章------【算法和数据结构】LeetCode题解

一、题目

二、解法

思路分析:本题可以从0阶或者1阶台阶开始,每次爬楼梯所需的花费是之前的花费dp[i]+从本层向上爬所需的cost[i] d p [ i ] + c o s t [ i ] dp[i]+cost[i] dp[i]+cost[i]。可能到达第i阶台阶的情况有两种:从第i-2阶台阶一次性爬两步;从第i-1阶台阶一次性爬一步。因为要找到最小的花费,可以知道动态数组的表达式为: d p [ i ] = m i n ( d p [ i − 2 ] + c o s t [ i − 2 ] , d p [ i − 1 ] + c o s t [ i − 1 ] ) dp[i] = min(dp[i-2]+cost[i-2],dp[i-1]+cost[i-1]) dp[i]=min(dp[i−2]+cost[i−2],dp[i−1]+cost[i−1])。

程序如下:

cpp 复制代码
class Solution {
public:
	int minCostClimbingStairs(vector<int>& cost) {
		vector<int> dp(cost.size() + 1);	// 楼顶
		dp[0] = 0;
		dp[1] = 0;
		for (int i = 2; i <= cost.size(); i++) {
			dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
		}
		return dp[cost.size()];
	}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n)。
  • 空间复杂度: O ( n ) O(n) O(n)。

三、完整代码

cpp 复制代码
# include <iostream>
# include <vector>
# include <algorithm>
using namespace std;

class Solution {
public:
	int minCostClimbingStairs(vector<int>& cost) {
		vector<int> dp(cost.size() + 1);	// 楼顶
		dp[0] = 0;
		dp[1] = 0;
		for (int i = 2; i <= cost.size(); i++) {
			dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
		}
		return dp[cost.size()];
	}
};

int main() {
	vector<int> cost = { 1, 100, 1, 1, 1, 100, 1, 1, 100, 1 };
	Solution s1;
	int result = s1.minCostClimbingStairs(cost);
	cout << result << endl;
	system("pause");
	return 0;
}

end

相关推荐
Dingdangcat8634 分钟前
城市交通多目标检测系统:YOLO11-MAN-FasterCGLU算法优化与实战应用_3
算法·目标检测·目标跟踪
tang&1 小时前
滑动窗口:双指针的优雅舞步,征服连续区间问题的利器
数据结构·算法·哈希算法·滑动窗口
拼命鼠鼠1 小时前
【算法】矩阵链乘法的动态规划算法
算法·矩阵·动态规划
LYFlied2 小时前
【每日算法】LeetCode 17. 电话号码的字母组合
前端·算法·leetcode·面试·职场和发展
式5162 小时前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——翻转对
算法·排序算法·结构与算法
叠叠乐3 小时前
robot_state_publisher 参数
java·前端·算法
hweiyu003 小时前
排序算法:冒泡排序
算法·排序算法
brave and determined3 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
Dave.B4 小时前
用【vtk3DLinearGridCrinkleExtractor】快速提取3D网格相交面
算法·3d·vtk