拍拍贷数据分析-逾期情况分析

数据背景

所提供数据来自拍拍贷真实业务数据,从2015-01-01到2017-01-30的所有信用标的10%sample样本。数据集包含LC.csv(标的特征表数据)和LP.csv(标的还款计划和还款记录表)数据。详情如下:

数据字典

1.LC.csv 数据大小:50.7MB

LC (Loan Characteristics) 表为标的特征表,每支标一条记录。共有21个字段,包括一个主键(listingid)、7个标的特征和13个成交当时的借款人信息,全部为成交当时可以获得的信息。

2.LP.csv 数据大小:198MB

LP (Loan Periodic) 表为标的还款计划和还款记录表,每支标每期还款为一条记录。 还款记录和状态更新至2017年2月22日。共有10个字段,包括两个主键(listingid和期数),3个还款计划字段和4个还款状态字段

字段序号 字段名 字段注释

数据预览

1.LC.csv

LP.csv

  1. 计算整体逾期情况
  2. 月逾期人数、金额
  3. 不同年龄、性别、初试信用评级的逾期情况
  4. 影响逾期率因素分析

1计算整体逾期情况

逾期率 = 逾期期数/(正常还款期数+逾期还款期数)

scala 复制代码
    //逾期还款次数/(yuqi_times+normal_times) 0.081
    df_all_counts.agg(functions
      .sum("yuqi_times")/
      (functions.sum("yuqi_times")+
        functions.sum("normal_times")))

2月逾期用户、金额


随着时间的增加,逾期人数未归还金额越来越多,平台风险增大。

3不同年龄、性别、初试信用评级等的逾期情况

年龄

25岁以下借款人逾期率普遍高于整体逾期率,30-40岁借款人逾期率最低。

性别

女性逾期率略高于男性。

认证个数

认证个数大于3个的逾期率较低,小于三个逾期率较高。

初始信用评级

初始信用评级越高,逾期率越低。

贷款类型

普通贷款类型逾期率最高。

贷款金额

贷款金额低于1万元时逾期率较低。

根据逾期情况提出运营建议

平台随着时间增加,逾期人数和金额都在增加,平台风险变大。根据各类型的逾期情况改变贷款策略。年龄低于25岁、认证个数小于三个、初试信用等级低于D和贷款金额较大的用户都应谨慎放贷。

相关推荐
一百天成为python专家13 分钟前
K-近邻算法
数据结构·python·算法·pandas·近邻算法·ipython·python3.11
这儿有一堆花14 分钟前
Python程序打包成EXE完全指南:四种方法详解与实战
python
微小冷22 分钟前
Vimba相机二次开发教程,基于Python
开发语言·python·二次开发·相机开发·vimba相机·vimba
java1234_小锋35 分钟前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 热词数量分析日期统计功能实现
python·自然语言处理·flask
山烛1 小时前
KNN 算法中的各种距离:从原理到应用
人工智能·python·算法·机器学习·knn·k近邻算法·距离公式
guozhetao1 小时前
【ST表、倍增】P7167 [eJOI 2020] Fountain (Day1)
java·c++·python·算法·leetcode·深度优先·图论
墨染点香1 小时前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
阿什么名字不会重复呢2 小时前
在线工具+网页平台来学习和操作Python与Excel相关技能
python·数据分析
Vertira2 小时前
python 阿里云 安装 dashscope的简介、安装
开发语言·python
gc_22993 小时前
学习Python中Selenium模块的基本用法(1:简介)
python·selenium