拍拍贷数据分析-逾期情况分析

数据背景

所提供数据来自拍拍贷真实业务数据,从2015-01-01到2017-01-30的所有信用标的10%sample样本。数据集包含LC.csv(标的特征表数据)和LP.csv(标的还款计划和还款记录表)数据。详情如下:

数据字典

1.LC.csv 数据大小:50.7MB

LC (Loan Characteristics) 表为标的特征表,每支标一条记录。共有21个字段,包括一个主键(listingid)、7个标的特征和13个成交当时的借款人信息,全部为成交当时可以获得的信息。

2.LP.csv 数据大小:198MB

LP (Loan Periodic) 表为标的还款计划和还款记录表,每支标每期还款为一条记录。 还款记录和状态更新至2017年2月22日。共有10个字段,包括两个主键(listingid和期数),3个还款计划字段和4个还款状态字段

字段序号 字段名 字段注释

数据预览

1.LC.csv

LP.csv

  1. 计算整体逾期情况
  2. 月逾期人数、金额
  3. 不同年龄、性别、初试信用评级的逾期情况
  4. 影响逾期率因素分析

1计算整体逾期情况

逾期率 = 逾期期数/(正常还款期数+逾期还款期数)

scala 复制代码
    //逾期还款次数/(yuqi_times+normal_times) 0.081
    df_all_counts.agg(functions
      .sum("yuqi_times")/
      (functions.sum("yuqi_times")+
        functions.sum("normal_times")))

2月逾期用户、金额


随着时间的增加,逾期人数未归还金额越来越多,平台风险增大。

3不同年龄、性别、初试信用评级等的逾期情况

年龄

25岁以下借款人逾期率普遍高于整体逾期率,30-40岁借款人逾期率最低。

性别

女性逾期率略高于男性。

认证个数

认证个数大于3个的逾期率较低,小于三个逾期率较高。

初始信用评级

初始信用评级越高,逾期率越低。

贷款类型

普通贷款类型逾期率最高。

贷款金额

贷款金额低于1万元时逾期率较低。

根据逾期情况提出运营建议

平台随着时间增加,逾期人数和金额都在增加,平台风险变大。根据各类型的逾期情况改变贷款策略。年龄低于25岁、认证个数小于三个、初试信用等级低于D和贷款金额较大的用户都应谨慎放贷。

相关推荐
powerfulhell2 小时前
寒假python作业5
java·前端·python
铉铉这波能秀2 小时前
LeetCode Hot100 中 enumerate 函数的妙用(2026.2月版)
数据结构·python·算法·leetcode·职场和发展·开发
毕设源码-赖学姐2 小时前
【开题答辩全过程】以 基于python的电影推荐系统为例,包含答辩的问题和答案
开发语言·python
敲键盘的生活2 小时前
MoneyPrinter重构之一:用nicegui调用大模型生成视频文案
python·重构·aigc·ai编程·ai写作
小邓睡不饱耶2 小时前
2026 CSDN榜单封神!3大热门技术+5个大厂案例,新手也能直接抄作业
python·ai
南极星10052 小时前
我的创作纪念日--128天
java·python·opencv·职场和发展
码界筑梦坊2 小时前
327-基于Django的兰州空气质量大数据可视化分析系统
python·信息可视化·数据分析·django·毕业设计·数据可视化
Highcharts.js2 小时前
如何使用Highcharts SVG渲染器?
开发语言·javascript·python·svg·highcharts·渲染器
啊阿狸不会拉杆2 小时前
《机器学习导论》第 7 章-聚类
数据结构·人工智能·python·算法·机器学习·数据挖掘·聚类
摇滚侠2 小时前
Java,举例说明,函数式接口,函数式接口实现类,通过匿名内部类实现函数式接口,通过 Lambda 表达式实现函数式接口,演变的过程
java·开发语言·python