拍拍贷数据分析-逾期情况分析

数据背景

所提供数据来自拍拍贷真实业务数据,从2015-01-01到2017-01-30的所有信用标的10%sample样本。数据集包含LC.csv(标的特征表数据)和LP.csv(标的还款计划和还款记录表)数据。详情如下:

数据字典

1.LC.csv 数据大小:50.7MB

LC (Loan Characteristics) 表为标的特征表,每支标一条记录。共有21个字段,包括一个主键(listingid)、7个标的特征和13个成交当时的借款人信息,全部为成交当时可以获得的信息。

2.LP.csv 数据大小:198MB

LP (Loan Periodic) 表为标的还款计划和还款记录表,每支标每期还款为一条记录。 还款记录和状态更新至2017年2月22日。共有10个字段,包括两个主键(listingid和期数),3个还款计划字段和4个还款状态字段

字段序号 字段名 字段注释

数据预览

1.LC.csv

LP.csv

  1. 计算整体逾期情况
  2. 月逾期人数、金额
  3. 不同年龄、性别、初试信用评级的逾期情况
  4. 影响逾期率因素分析

1计算整体逾期情况

逾期率 = 逾期期数/(正常还款期数+逾期还款期数)

scala 复制代码
    //逾期还款次数/(yuqi_times+normal_times) 0.081
    df_all_counts.agg(functions
      .sum("yuqi_times")/
      (functions.sum("yuqi_times")+
        functions.sum("normal_times")))

2月逾期用户、金额


随着时间的增加,逾期人数未归还金额越来越多,平台风险增大。

3不同年龄、性别、初试信用评级等的逾期情况

年龄

25岁以下借款人逾期率普遍高于整体逾期率,30-40岁借款人逾期率最低。

性别

女性逾期率略高于男性。

认证个数

认证个数大于3个的逾期率较低,小于三个逾期率较高。

初始信用评级

初始信用评级越高,逾期率越低。

贷款类型

普通贷款类型逾期率最高。

贷款金额

贷款金额低于1万元时逾期率较低。

根据逾期情况提出运营建议

平台随着时间增加,逾期人数和金额都在增加,平台风险变大。根据各类型的逾期情况改变贷款策略。年龄低于25岁、认证个数小于三个、初试信用等级低于D和贷款金额较大的用户都应谨慎放贷。

相关推荐
叶凡要飞10 分钟前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
yuluo_YX18 分钟前
VSR 项目解析
人工智能·python
计算衎1 小时前
python通过win32com库调用UDE工具来做开发调试实现自动化源码,以及UDE的知识点介绍
python·c/c++·pywin32·ude·com api
Full Stack Developme1 小时前
java.nio 包详解
java·python·nio
新手村领路人2 小时前
opencv gpu cuda python c++版本测试代码
python·opencv·cuda
高洁012 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
white-persist2 小时前
CSRF 漏洞全解析:从原理到实战
网络·python·安全·web安全·网络安全·系统安全·csrf
Bellafu6663 小时前
本地搭建EXAM-MASTER考试系统
python
开心-开心急了3 小时前
Flask入门教程——李辉 第三章 关键知识梳理
后端·python·flask
rannn_1114 小时前
【学以致用|python自动化办公】OCR批量识别自动存为Excel(批量识别发票)
python·ocr·excel·财务