拍拍贷数据分析-逾期情况分析

数据背景

所提供数据来自拍拍贷真实业务数据,从2015-01-01到2017-01-30的所有信用标的10%sample样本。数据集包含LC.csv(标的特征表数据)和LP.csv(标的还款计划和还款记录表)数据。详情如下:

数据字典

1.LC.csv 数据大小:50.7MB

LC (Loan Characteristics) 表为标的特征表,每支标一条记录。共有21个字段,包括一个主键(listingid)、7个标的特征和13个成交当时的借款人信息,全部为成交当时可以获得的信息。

2.LP.csv 数据大小:198MB

LP (Loan Periodic) 表为标的还款计划和还款记录表,每支标每期还款为一条记录。 还款记录和状态更新至2017年2月22日。共有10个字段,包括两个主键(listingid和期数),3个还款计划字段和4个还款状态字段

字段序号 字段名 字段注释

数据预览

1.LC.csv

LP.csv

  1. 计算整体逾期情况
  2. 月逾期人数、金额
  3. 不同年龄、性别、初试信用评级的逾期情况
  4. 影响逾期率因素分析

1计算整体逾期情况

逾期率 = 逾期期数/(正常还款期数+逾期还款期数)

scala 复制代码
    //逾期还款次数/(yuqi_times+normal_times) 0.081
    df_all_counts.agg(functions
      .sum("yuqi_times")/
      (functions.sum("yuqi_times")+
        functions.sum("normal_times")))

2月逾期用户、金额


随着时间的增加,逾期人数未归还金额越来越多,平台风险增大。

3不同年龄、性别、初试信用评级等的逾期情况

年龄

25岁以下借款人逾期率普遍高于整体逾期率,30-40岁借款人逾期率最低。

性别

女性逾期率略高于男性。

认证个数

认证个数大于3个的逾期率较低,小于三个逾期率较高。

初始信用评级

初始信用评级越高,逾期率越低。

贷款类型

普通贷款类型逾期率最高。

贷款金额

贷款金额低于1万元时逾期率较低。

根据逾期情况提出运营建议

平台随着时间增加,逾期人数和金额都在增加,平台风险变大。根据各类型的逾期情况改变贷款策略。年龄低于25岁、认证个数小于三个、初试信用等级低于D和贷款金额较大的用户都应谨慎放贷。

相关推荐
热爱生活的五柒14 分钟前
在有真实标签 (Ground Truth) 的情况下,常用的指标有哪些?聚类指标有哪些?
python·指标
superman超哥15 分钟前
仓颉语言智能指针深度实战:突破 GC 与所有权的边界
c语言·开发语言·c++·python·仓颉
Elaine33624 分钟前
【基于 Scikit-learn 本地数据集的垂直领域词云生成】
python·机器学习·nlp·scikit-learn·词云
38242782726 分钟前
python:mysql数据库
数据库·python·mysql
中科院提名者30 分钟前
KNN实战进阶:模型评估、Scikit-learn实现与Numpy手动编码
python·numpy·scikit-learn
2401_8414956434 分钟前
【LeetCode刷题】杨辉三角
数据结构·python·算法·leetcode·杨辉三角·时间复杂度·空间复杂度
Maxwell_li144 分钟前
新冠检测例子学习查准率和召回率
学习·机器学习·数据分析·回归·numpy·pandas
ClouGence1 小时前
打通复杂医疗数据链路:某头部医疗服务商的数据底座落地经验分享
数据库·经验分享·数据分析
小白开始进步1 小时前
OpenCV图像滤波:Python实战指南
人工智能·python·opencv
Aevget1 小时前
Python开发利器PyCharm v2025.3全新发布——支持主动数据探索
开发语言·ide·python·pycharm