OpenCV-15位运算

OpenCV中的逻辑运算就是对应位置的元素进行与、或、非和异或。

Opencv与Python不同的是:OpenCV中0的非反过来是255,255反过来是0。

但是Python中255非为-256。

一、非运算

使用API---cv.bitwise_not(str)

示例代码如下:

复制代码
import cv2
import numpy as np


cat = cv2.imread("cat.png")


cat_not = cv2.bitwise_not(cat)      # 进行非运算
cv2.imshow("not", np.hstack((cat, cat_not)))   # 两张图片水平展示
print(cat[:2, :2])
print(cat_not[:2, :2])

cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

从图片中我们可以发现:猫白色的部分变为了黑色.

从数组中我们可以看出:每个数字取反,在munpy中最大值为255,因此此时255-90=165。

二、与运算

使用API---cv.bitwise_and(str)

第一个为小狗,第二个为小猫,第三个为经过与运算的,其中246 & 90 = 82

OpenCV与Python中的与运算一致,都是先将十进制数字转为二进制,再进行与运算,最后再转化为十进制。

且一般经过与运算后的数字比前两个较小。

三、或运算

使用API---cv.bitwise_or(str)

与对应位置元素进行或运算

其中 246 | 90 = 254,或运算的法则与Python一样。

整体数字变大,图片变亮。

四、异或运算

使用API---cv.bitwise_xor(str)

注意点:np.hstack(),中间补充的元素必须为元组。

整体颜色比较乱。按对应位置的元素进行二进制异或操作。

数字相同为1,数字不同为0.

经验证可得 246 ^ 90 = 172 其中255 ^255 = 0

综合演示代码如下所示:

复制代码
import cv2
import numpy as np


cat = cv2.imread("cat.png")
dog = cv2.imread("dog.png")
new_dog = dog[:370, :550]
new_cat = cat[:370, :550]

# cat_not = cv2.bitwise_not(cat)      # 进行非运算
# cv2.imshow("not", np.hstack((cat, cat_not)))   # 非运算两张图片水平展示

# cat_and = cv2.bitwise_and(new_cat, new_dog)
# cv2.imshow("and", np.hstack((new_cat, cat_and)))   # 与运算两张图片水平展示

# cat_or = cv2.bitwise_or(new_cat, new_dog)
# cv2.imshow("or", np.hstack((new_cat, cat_or)))   # 与运算两张图片水平展示

cat_xor = cv2.bitwise_xor(new_cat, new_dog)
cv2.imshow("xor", np.hstack((new_cat, cat_xor)))
print(new_dog[:2, :2])
print("-----------------------")
print(new_cat[:2, :2])
print("-----------------------")
# print(cat_and[:2, :2])    # 输出两个图片的与操作
# print(cat_or[:2, :2])    # 输出两个图片的或操作
print(cat_xor[:2, :2])    # 输出两个图片的或操作


cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
达芬奇科普29 分钟前
俄罗斯全面禁止汽油出口对俄、欧、中能源市场的多维影响分析
大数据·人工智能
AI量化投资实验室34 分钟前
年化398%,回撤11%,夏普比5,免费订阅,5积分可查看参数|多智能体的架构设计|akshare的期货MCP代码
人工智能·python
电鱼智能的电小鱼40 分钟前
基于电鱼 ARM 工控机的煤矿主控系统高可靠运行方案——让井下控制系统告别“死机与重启”
arm开发·人工智能·嵌入式硬件·深度学习·机器学习
OAFD.43 分钟前
深度学习之图像分割:从基础概念到核心技术全解析
人工智能·深度学习
武子康1 小时前
AI研究-116 特斯拉 HW3.0 与 HW4.0 区别详解:摄像头分辨率、FSD算力、雷达与Vision泊车
人工智能·深度学习·计算机视觉·ai·自动驾驶·汽车·视觉检测
Mrliu__1 小时前
Opencv(六) : 颜色识别
人工智能·opencv·计算机视觉
Liudef061 小时前
基于LLM的智能数据查询与分析系统:实现思路与完整方案
前端·javascript·人工智能·easyui
芥子沫1 小时前
《人工智能基础》[算法篇3]:决策树
人工智能·算法·决策树
Y200309161 小时前
U-net 系列算法总结
人工智能·算法·目标跟踪
夫唯不争,故无尤也1 小时前
AI调度框架全解析:从通用到LLM专用
python·大模型·调用框架