Bug小能手系列(python)_14: pd.concat得到的矩阵错误

pd.concat得到的不是自己想要的矩阵

  • [0 引言](#0 引言)
  • [1 错误原因](#1 错误原因)
  • [2 解决思路](#2 解决思路)
  • [3 具体代码](#3 具体代码)
  • [4 总结](#4 总结)

0 引言

今天在运行pd.concat (pd指的是pandas库),需要将两个DataFrame数据(数据分别为5*4的矩阵)进行列合并时,突然发现得到的矩阵是10*8的,而不是我想要的5*8的!!!虽然是个小问题,但是感觉网上给出的内容一直没把这个问题介绍清楚,这里就专门写一篇文章帮助大家理解这个问题,希望大家可以清晰地理解这个问题。运行得到的矩阵数据的图片如下:

运行代码的如下:

python 复制代码
data = pd.concat([data_0, data_1], axis=1)
# 或者是下面这样 得到的结果是一样的  
# 下面这样结果更不好  会消掉你的索引
data = pd.concat([data_0, data_1], axis=1, ignore_index=True)

可以看到矩阵中有很多nan的数值,初步分析是存在空缺值,排查后发现没有!!

然后,怀疑是两个数据冲突导致的,但是数据为什么会冲突呢? 根本没有什么区别呀?

最后,经过仔细分析后发现是:行号冲突!!!

1 错误原因

其实错误原因很简单:前面5行数据的行号和后面5行的行号不一样,所以使用concat连接的时候不会列直接连接,所以导致最终是个10*8的矩阵。

2 解决思路

按照上面的原因,只要将行号重置一下,那样的话不就可以正常连接了嘛?!

没错,解决思路就是将行号重置!!!

这里简要介绍一下所用的函数:reset_index

  • level: 控制哪些层次的索引需要被重置,默认为 None,表示所有层次的索引都会被重置。
  • drop: 如果为 True,将重置的索引从列中删除,默认为 False。
  • inplace: 如果为 True,将在原地修改对象,并返回 None。如果为 False,将返回一个新的带有重置索引的对象,默认为 False。
  • col_level: 如果索引是多层次的,指定将哪个层次的索引重置为列,默认为 0。
  • col_fill: 如果指定了 col_level,可以用来指定新列的名称

注意:这里没有明确说到底哪个是重置行号的,但是有个原地修改对象,这个可以直接将行号重置!!!

原来的data_1:

使用了代码:

python 复制代码
# 这里注意drop=True  这个也是要加的 不然你的行号会变成一个单独的列 
# 有兴趣的可以测试一下
data_1.reset_index(drop=True, inplace=True)

重置后的data_1:

3 具体代码

下面是使用zeros矩阵生成的数据,跟真实数据本质是一样的。示例代码如下(大家可以测试一下上面说的问题 以及解决方案):

python 复制代码
data_df = np.DataFrame(np.zeros([100,4]))
for i in range(len(data_df)//10):
	data_0 = data_df.iloc[i*5:(i+1)*5,:]
	data_1 = data_df.iloc[start_ind+i*5:start_ind+(i+1)*5, :]
	# 很少有人重置这里   这是因为第一遍的时候 data_0的索引就是0-4 所以不用重置
	# 但是第二遍的时候索引就不是了  所以在我们的代码里这个部分需要重置
	data_0.reset_index(drop=True,inplace=True)
	data_1.reset_index(drop=True, inplace=True)
	data = pd.concat([data_0, data_1],axis=1)

第1轮的data_0:

第2轮的data_0:

4 总结

总的而言,感觉出现concat得到矩阵错误主要是因为行号的问题。如果大家有什么问题的话可以评论留言,这边会根据最新的内容进行更新!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

相关推荐
秋难降17 分钟前
Python 知识点详解(三)
python·编程语言
chao_7891 小时前
二分查找篇——寻找旋转排序数组中的最小值【LeetCode】
python·线性代数·算法·leetcode·矩阵
金玉满堂@bj1 小时前
PyCharm 中 Python 解释器的添加选项及作用
ide·python·pycharm
程序员三藏1 小时前
如何使用Pytest进行测试?
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
随心点儿2 小时前
使用python 将多个docx文件合并为一个word
开发语言·python·多个word合并为一个
不学无术の码农2 小时前
《Effective Python》第十三章 测试与调试——使用 Mock 测试具有复杂依赖的代码
开发语言·python
sleepybear11132 小时前
在Ubuntu上从零开始编译并运行Home Assistant源码并集成HACS与小米开源的Ha Xiaomi Home
python·智能家居·小米·home assistant·米家·ha xiaomi home
纪伊路上盛名在2 小时前
(鱼书)深度学习入门1:python入门
人工智能·python·深度学习
夏末蝉未鸣012 小时前
python transformers笔记(TrainingArguments类)
python·自然语言处理·transformer
德育处主任Pro3 小时前
「py数据分析」04如何将 Python 爬取的数据保存为 CSV 文件
数据库·python·数据分析