强化学习应用(一):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介

Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。

Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能获得的预期累积奖励。算法的基本步骤如下:

  1. 初始化Q值表格,将所有Q值初始化为0。

  2. 在每个时间步骤t,智能体观察当前状态st,并根据当前Q值表格选择一个动作at。选择动作的方法可以是ε-greedy策略,即以ε的概率随机选择一个动作,以1-ε的概率选择当前Q值最大的动作。

  3. 执行动作at,观察环境反馈的奖励rt+1和下一个状态st+1。

  4. 根据Q-learning更新规则更新Q值表格中的Q值:

Q(st, at) = Q(st, at) + α * (rt+1 + γ * max(Q(st+1, a)) - Q(st, at))

其中,α是学习率,γ是折扣因子,用于平衡当前奖励和未来奖励的重要性。

  1. 重复步骤2-4,直到达到停止条件(例如达到最大迭代次数或Q值收敛)。

Q-learning算法的目标是通过不断更新Q值表格,使得智能体能够在环境中找到最优策略,以最大化累积奖励。

二、无人机物流路径规划

无人机物流路径规划是指利用无人机进行货物运输时,通过算法和技术使其无人机将所有货物运送到指定位置,并返回起点,并得到最优飞行路径,以实现高效、安全和准确的货物运输。无人机物流路径规划可以简单抽象为旅行商问题(Traveling Salesman Problem, TSP)。TSP是一个经典的组合优化问题,它的目标是找到一条路径,使得旅行商从起点出发,经过所有城市恰好一次,最后回到起点,并且总路径长度最短。解决TSP问题的方法有很多,其中一种常用的方法是蚁群算法。除了蚁群算法,还有其他一些常用的解决TSP问题的方法,如遗传算法、动态规划和强化学习等。强化学习求解TSP问题思路新颖,具有一定优势。

三、Q-learning求解无人机物流路径规划

1、部分代码

可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。

复制代码
import matplotlib.pyplot as plt
from Qlearning import Qlearning
#Chos: 1 随机初始化地图; 0 导入固定地图
chos=1
node_num=36 #当选择随机初始化地图时,自动随机生成node_num-1个城市
# 创建对象,初始化节点坐标,计算每两点距离
qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node_num=node_num)
# 训练Q表、打印路线
iter_num=1000#训练次数
Curve,BestRoute,Qtable,Map=qlearn.Train_Qtable(iter_num=iter_num)
#Curve 训练曲线
#BestRoute 最优路径
#Qtable Qlearning求解得到的在最优路径下的Q表
#Map TSP的城市节点坐标


## 画图
plt.figure()
plt.ylabel("distance")
plt.xlabel("iter")
plt.plot(Curve, color='red')
plt.title("Q-Learning")
plt.savefig('curve.png')
plt.show()

2、部分结果

(1)以国际通用的TSP实例库TSPLIB中的测试集bayg29为例:

Qlearning算法得到的最短路线: [1, 28, 6, 12, 9, 5, 26, 29, 3, 2, 21, 20, 10, 4, 15, 18, 14, 22, 17, 11, 19, 25, 7, 23, 27, 8, 24, 16, 13, 1]

(2)随机生成38个城市

Qlearning算法得到的最短路线: [1, 22, 18, 30, 20, 33, 6, 14, 5, 23, 2, 10, 4, 7, 36, 8, 24, 26, 21, 28, 16, 12, 11, 3, 25, 37, 35, 29, 15, 32, 34, 31, 19, 27, 38, 13, 9, 17, 1]

(3)随机生成17个城市

Qlearning算法得到的最短路线: [1, 5, 10, 6, 7, 3, 13, 15, 9, 4, 14, 12, 2, 11, 16, 8, 17, 1]

四、完整Python代码

相关推荐
菜鸟小九2 分钟前
SSM(MybatisPlus)
java·开发语言·spring boot·后端
一人の梅雨3 分钟前
亚马逊 MWS 关键字 API 实战:关键字搜索商品列表接口深度解析与优化方案
python·spring
数据知道5 分钟前
Go基础:常用数学函数处理(主要是math包rand包的处理)
开发语言·后端·golang·go语言
学习同学6 分钟前
从0到1制作一个go语言服务器 (一) 配置
服务器·开发语言·golang
大飞pkz10 分钟前
【设计模式】桥接模式
开发语言·设计模式·c#·桥接模式
数据知道23 分钟前
Go基础:文件与文件夹操作详解
开发语言·后端·golang·go语言
珍宝商店41 分钟前
原生 JavaScript 方法实战指南
开发语言·前端·javascript
神龙斗士2401 小时前
Java 数组的定义与使用
java·开发语言·数据结构·算法
白露与泡影1 小时前
2025互联网大厂高频Java面试真题解析
java·开发语言·面试
gopyer1 小时前
180课时吃透Go语言游戏后端开发2:Go语言中的变量
开发语言·游戏·golang·游戏后端开发