自定义数据实现SA3D

SA3D:Segment Anything in 3D with NeRFs

实现了3D目标分割

原理是利用SAM(segment anything) 模型和Nerf分割渲染3D目标,

SAM只能分块,是没有语义标签的,如何做到语义连续?

SA3D中用了self-prompt, 根据前一帧的mask自己给出提示点,用SAM再预测下一帧的mask.

1.准备数据

这里用llff数据的格式。

它需要的input是图像,colmap建好的poses, 训练好的nerf。

通过llff的fern文件夹说明自定义数据怎么准备。

nerf_llff_data/fern文件夹包含如下数据,

其中images是相机拍摄的原图,size为4032 * 3024,

由于图片太大,于是有了下采样4倍的images_4, 下采样8倍的images_8.

用的时候images_4就可以了。

sparse和database.db 是colmap生成的相机内外参,colmap怎么用参考其他。

poses_bounds.npy由sparse生成,后面会说。

最后2个用不到。

1.1 拍摄图片或视频

图片的话按照llff github 上的要求,

根据经验,您应该使用视图之间最大视差不超过约 64 像素的图像(观察距离相机最近的物体,不要让它移动超过视图之间水平视场的 1/8)。图片)。我们的数据集通常包含 20-30 张以粗略网格模式手持拍摄的图像。

最好是网格状拍。

如果拍的是视频,把视频转为图片序列。

把images里面拍到的图片下采样4倍,存入images_4文件夹。

1.2 生成pose

自己安装colmap. 或者用llff github 上的imgs2poses.py

这里用colmap生成。

colmap选Reconstruction -> Automatic Reconstruction.

只需要填workspace folder和image folder.

image folder要选images,而不是images_4.

Dense model的勾可以去掉,节省时间。

然后run, 你就会得到sparse文件夹。

然后你需要用这里pose_utils.py生成poses_bounds.npy.

需要下载这3个文件。

2.训练模型

2.1 训练nerf

设置文件:

configs/llff/fern.py

configs/liff/seg_fern.py

调整factor需要的文件

configs/llff/llff_default.py

configs/default.py

configs/llff/llff_seg_default.py

configs/seg_default.py

上面这些设置文件可以修改了直接用,也可以新建类似的。

2个设置文件中修改数据集的路径。

如果你不用下采样4倍的图片,比如要用下采样8倍的,

在后面4个文件中,把factor置8. 如果用原图,factor=1.

训练nerf

python 复制代码
python run.py --config=configs/llff/fern.py --stop_at=20000 --render_video --i_weights=10000

你可能会遇到sam3d.py中的bug,
UnboundLocalError: local variable 'sam_model_registry' referenced before assignment

解决方法,修改sam3d.py,

python 复制代码
class Sam3D(ABC):
    '''TODO, add discription'''
    def __init__(self, args, cfg, xyz_min, xyz_max, cfg_model, cfg_train, \
                 data_dict, device=torch.device('cuda'), stage='coarse', coarse_ckpt_path=None):
        ...
        if args.mobile_sam:
            ...
        else:
            from segment_anything import sam_model_registry  #加上这一句,修复bug
            sam_checkpoint = "./dependencies/sam_ckpt/sam_vit_h_4b8939.pth"
            ...

然后会在log/xx/xx/render_video_fine_last下面得到渲染好的3D场景。

2.2 训练SAM+nerf

python 复制代码
python run_seg_gui.py --config=configs/llff/seg/seg_fern.py --segment \
--sp_name=_gui --num_prompts=20 \
--render_opt=train --save_ckpt

会给一个链接,点进webUI,

这第一帧图包括后面训练的图,是上面训练nerf时渲染的图片,

如果你换了数据集,一定要重新训练nerf, 不然这些图片就还是之前的。

在第一帧图上选你要分割的物体。

训练中不需要再标注,SAM本身是没有语义的,为了保持语义的连续性,采用自标注的方法,

不断在mask上产生新标注的点。

分割及渲染结果。

相关推荐
南蓝8 分钟前
【AI 日记】调用大模型的时候如何按照 sse 格式输出
前端·人工智能
robot_learner11 分钟前
11 月 AI 动态:多模态突破・智能体模型・开源浪潮・机器人仿真・AI 安全与主权 AI
人工智能·机器人·开源
Mintopia39 分钟前
🌐 动态网络环境中 WebAIGC 的断点续传与容错技术
人工智能·aigc·trae
后端小张41 分钟前
【AI 学习】从0到1深入理解Agent AI智能体:理论与实践融合指南
人工智能·学习·搜索引擎·ai·agent·agi·ai agent
Mintopia42 分钟前
🧩 Claude Code Hooks 最佳实践指南
人工智能·claude·全栈
星空的资源小屋1 小时前
极速精准!XSearch本地文件搜索神器
javascript·人工智能·django·电脑
CoovallyAIHub1 小时前
破局红外小目标检测:异常感知Anomaly-Aware YOLO以“俭”驭“繁”
深度学习·算法·计算机视觉
mqiqe1 小时前
【Spring AI MCP】六、SpringAI MCP 服务端 STDIO & SSE
java·人工智能·spring
飞哥数智坊1 小时前
两天一首歌,这个UP主是怎么做到的?
人工智能·aigc
草莓熊Lotso1 小时前
红黑树从入门到进阶:4 条规则如何筑牢 O (logN) 效率根基?
服务器·开发语言·c++·人工智能·经验分享·笔记·后端