Self-Attention

前置知识:RNN,Attention机制

在一般任务的Encoder-Decoder框架中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句子,Attention机制发生在Target的元素和Source中的所有元素之间。

Self-Attention是在Source内部元素或者Target内部元素之间发生的Attention机制,也可以理解为Target=Source这种特殊情况下的注意力计算机制,相当于是Query=Key=Value,计算过程与Attention一样。

作用

Self-Attention模型可以理解为对RNN的替代,有着以下两个作用:

  • 引入Self-Attention后会更容易捕获句子中长距离的相互依赖的特征。Self-Attention在计算过程中会直接将句子中任意两个单词的联系通过一个计算步骤直接联系起来,所以远距离依赖特征之间的距离被极大缩短,有利于有效地利用这些特征。

  • Self Attention对于增加计算的并行性也有直接帮助作用。正好弥补了attention机制的两个缺点,这就是为何Self Attention逐渐被广泛使用的主要原因。

对于计算并行性的分析

Self-Attention使得Attention模型满足:

其中:

  • dk是Q和K的维度(矩阵中向量的个数,即列数)

对于位置信息的分析

这个位置信息ei不是学出来的,在paper里,是人手设置出来的,每个位置都不一样,代表在第几个positon。

我们构造一个p向量,这是一个one-hot向量,只有某一维为1,代表这个单元是第几个位置。

我们和x进行拼接再进行w的运算得到a,它又等价于右边的公式,相当于ai+ei:

相关推荐
蓝染k9z1 分钟前
在Ubuntu上使用Docker部署DeepSeek
linux·人工智能·ubuntu·docker·deepseek+
python算法(魔法师版)27 分钟前
基于机器学习鉴别中药材的方法
深度学习·线性代数·算法·机器学习·支持向量机·数据挖掘·动态规划
小李学AI1 小时前
基于YOLO11的遥感影像山体滑坡检测系统
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉·yolo11
笨小古1 小时前
保姆级教程:利用Ollama与Open-WebUI本地部署 DeedSeek-R1大模型
人工智能·deepseek
AI浩2 小时前
【Block总结】CPCA,通道优先卷积注意力|即插即用
人工智能·深度学习·目标检测·计算机视觉
IT果果日记2 小时前
Ollama+OpenWebUI部署本地大模型
人工智能·ai编程·ollama·openwebui
说私域2 小时前
基于开源2 + 1链动模式AI智能名片S2B2C商城小程序的内容创作与传播效能探究
人工智能·小程序·开源
想拿高薪的韭菜3 小时前
人工智能第2章-知识点与学习笔记
人工智能·笔记·学习
雾岛心情4 小时前
【AIGC专栏】AI在自然语言中的应用场景
人工智能·chatgpt·aigc
Jet45055 小时前
玩转ChatGPT:DeepSeek测评(科研思路梳理)
人工智能·chatgpt·kimi·deepseek-r1