ipad协议滑块详解2

请使用python环境进行测试修改编译

改源码进攻学习参考使用,切勿用于非法操作,后果自行承担,与博主无关!!!!!

接口代码1

import hashlib

import json

import re

import time

import ddddocr

import requests

import execjs

import base64

from io import BytesIO

from urllib.parse import urlencode

import os

from PIL import Image

def post_api(img):

with open(img, "rb") as f:

bin_contents = f.read()

heads={

"content-type":"image/png"

}

result = requests.post("http://111.224.107.217:710/ocr", data=bin_contents,headers=heads)

return result.text

def get_img(img1,img2):

new_image = Image.new('RGB', (672, 620), 'white')

new_image.paste(img1, (0, 0))

new_image.paste(img2, (200, 200))

slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)

yuming = "https://t.captcha.qq.com"

headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"

}

def get_slide_data(aid):

#url = "https://ssl.ptlogin2.qq.com/check?regmaster=\&pt_tea=2\&pt_vcode=1\&uin=123456\&appid=716027609\&js_ver=23071715\&js_type=1\&login_sig=lbhSg7DKUcLjie3yZlSOblGe3WdqeOe9X4daUZecV-lhW7DCOcx6Y1wdPUmbnJ6F\&u1=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&r=0.25903945246093674\&pt_uistyle=40\&daid=383\&pt_3rd_aid=102013353\&o1vId=b85257193f7035a52f6144d700801644\&pt_js_version=v1.46.0"

#r = requests.get(url, headers=headers).text

#sid = re.findall(".*?'(.*?)'",r)

#print(sid[6])

url="https://t.captcha.qq.com/cap_union_prehandle?aid={}\&protocol=https\&accver=1\&showtype=popup\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=0\&enableDarkMode=0\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2F007.qq.com%2Fonline.html\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=11\&callback=_aq_426535\&sess=".format(aid)

#url = "https://t.captcha.qq.com/cap_union_prehandle?aid=716027609\&protocol=https\&accver=1\&showtype=embed\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=1\&enableDarkMode=0\&sid="+sid\[6\]+"\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=7\&callback=_aq_380771\&sess="

r = requests.get(url, headers=headers).text[11: -1]

data = json.loads(r)

#print(data)

_data ={}

_data["powCfg"]={}

_data["sid"] = data["sid"]

_data["sess"] = data["sess"]

_data["y"] = data["data"]['dyn_show_info']['fg_elem_list'][1]['init_pos'][1]

#print(_data["y"],"我是y坐标")

_data["powCfg"]["md5"] = data["data"]['comm_captcha_cfg']['pow_cfg']["md5"]

_data["powCfg"]["prefix"] = data["data"]['comm_captcha_cfg']['pow_cfg']["prefix"]

_data["dcFileName"] = data["data"]['comm_captcha_cfg']['tdc_path']

_data["cdnPic1"] = data["data"]['dyn_show_info']['bg_elem_cfg']['img_url']

_data["cdnPic2"] = data["data"]['dyn_show_info']['sprite_url']

print("_data->",_data)

#_data["sid"] = data["sid"]

return _data

def find_slide_notch(url):

css_dict = {

"background-image": url,

"background-position": "-70.8333px -247.917px",

"background-size": "345.06px 313.69px",

"width": "60.7143px",

"height": "60.7143px",

"left": "25.2976px",

"top": "123.958px",

"z-index": "1",

"cursor": "pointer",

"opacity": "1",

}

获取图片并加载为Pillow Image对象

response = requests.get(css_dict["background-image"])

img = Image.open(BytesIO(response.content))

解析CSS中的background-position和background-size属性

bg_position = [float(pos.strip("px")) for pos in css_dict["background-position"].split()]

bg_size = [float(size.strip("px")) for size in css_dict["background-size"].split()]

计算切割区域

x = -bg_position[0] * img.width / bg_size[0]

y = -bg_position[1] * img.height / bg_size[1]

w = float(css_dict["width"].strip("px")) * img.width / bg_size[0]

h = float(css_dict["height"].strip("px")) * img.height / bg_size[1]

切割图片

crop_img = img.crop((x, y, x + w, y + h))

可以将切割后的图片保存到本地

crop_img.save("crop_img.png")

with open("crop_img.png", "rb") as fp:

target_bytes = fp.read()

return target_bytes

def get_slide_distance(tar_img, back_img):

#图片处理 ddddorc处理,怎么处理啊,那种新版本的滑块,返回的阴影是整个

target_bytes = requests.get(tar_img).content

target_bytes = find_slide_notch(tar_img)

background_bytes = requests.get(back_img).content

res = slide.slide_match(target_bytes, background_bytes, simple_target=True)

return res["target"][0]-2, res["target"][1]

def post_data(collect, eks, sess, notch_data, prefix, nonce, sid,ip):

url = "https://t.captcha.qq.com/cap_union_new_verify"

headers = {

"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",

}

ans = "{},{}".format(notch_data[0], notch_data[1])

data = {

"collect":collect,

"tlg":len(collect),

"eks":eks,

"sess":sess,

"pow_answer":prefix,

"pow_calc_time":28,

"ans":[{"elem_id":1,"type":"DynAnswerType_POS","data":ans}]

}

#print(data)

#print(ip)

try:

r = requests.post(url, headers=headers, data=urlencode(data), proxies=ip, timeout=(3))

print(r.text)

return json.loads(r.text)

except:

print("代理ip有问题")

return {}

def sign_md5(params):

"""

对拼接好的字符串进行md5签名

"""

hl = hashlib.md5()

hl.update(params.encode(encoding='utf-8'))

return hl.hexdigest()

def get_ans(prefix, md5_code):

u = 0

while sign_md5(str(prefix) + str(u)) != md5_code:

u += 1

return str(u)

def get_data():

with open("./main.js", "r", encoding="utf-8") as fp:

exec_js = execjs.compile(fp.read())

data = exec_js.call("sign")

return data

def check(ticket, randstr):

print(ticket,randstr)

url = "https://shminorshort.weixin.qq.com/security/secondauth?t=login_verify_entrances/w_tcaptcha_ret\&wechat_real_lang=zh_CN\&aid=2000000038\&clientype=1\&lang=2052\&apptype=undefined\&captype=7\&disturblevel=1\&secticket=1_50849126415703827916983126930139\&pass_ticket=09con7e6%2FLfNNyWYz%2BpNMApotpCkWv3dIq0rMg8J25g6D7c4Iy89Gl4nQFciZiFs8CQdBsOJ48Lmp51KaD4pRQ%3D%3D\&ret=0\&ticket={}\&randstr={}\&step=8".format(ticket,randstr)

headers = {

"accept": "application/json, text/plain, */*",

"accept-encoding": "gzip, deflate",

"accept-language": "zh-CN,zh;q=0.9",

"referer": url,

"sec-fetch-dest": "empty",

"sec-fetch-mode": "cors",

"sec-fetch-site": "same-origin",

"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 NetType/WIFI MicroMessenger/7.0.20.1781(0x6700143B) WindowsWechat(0x6309071d) XWEB/8461 Flue"

}

jieguo = requests.get(url=url,headers=headers).text

print(jieguo,"----->我是提交结果")

def tx_start(aid, ip):

_t = time.time()

slide_data = get_slide_data(aid)

#tdc_js = "https://turing.captcha.qcloud.com/" + slide_data["dcFileName"]

slide_js = requests.get("https://t.captcha.qq.com" + slide_data["dcFileName"], headers=headers).text

img1 = "https://t.captcha.qq.com" + slide_data["cdnPic1"]

img2 = "https://t.captcha.qq.com" + slide_data["cdnPic2"]

print(img1,img2)

#find_slide_notch(img2)

#acc = get_slide_distance(img1,img2)

#print(acc[0],acc[1])

#notch_data = get_slide_distance(img2, img1)

background_bytes = requests.get(img1).content

res = slide.slide_match(background_bytes, find_slide_notch(img2), simple_target=True)

#res["target"][0] - 2, res["target"][1]

print(res)

#heads = {

"content-type": "image/png"

#}

#result = requests.post("http://111.224.107.217:710/ocr", data=background_bytes, headers=heads).text

notch_data =[]

notch_data.append(res["target"][0] - 2)

notch_data.append(res["target"][1])

print("坐标->",notch_data)

md5_code = slide_data["powCfg"]["md5"]

prefix = slide_data["powCfg"]["prefix"]

ans = get_ans(prefix, md5_code)

with open("./JsCode/start.js", "w", encoding="utf-8") as fp:#我好像没这个东西

fp.write(slide_js)

fp.flush()

print("tx------->执行结果")

data = get_data()

collect = data

eks = re_x_url(slide_js, "='", "'")

result = post_data(collect, eks, slide_data["sess"], notch_data, prefix + ans, "", slide_data["sid"],ip)

#print("耗费时间:{}ms".format((time.time() - _t)* 1000))

#判断是否通过滑块

if result["errorCode"] == 0:

ticket = result["ticket"]

randstr = result["randstr"]

check(ticket,randstr)

return result

else:

ipurl = "";

ip = requests.get(ipurl, headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

重试多次退出 需要判断次数 自己补充,等等,ddddocr那个拼接,你复制给我一份

return tx_start(aid, proxies)

def re_x_url(url, start, end, is_raise=True):

id = re.findall(r"{}(.*?){}".format(start, end), url)

if id:

id = id[0]

if is_raise and not id:

print("正则处理数据为空!")

raise IndexError("正则处理数据为空!")

return id

if name == 'main':

for i in range(10):

ipurl = "";#这里传代理

ip = requests.get(ipurl,headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

tx_start("2000000038",proxies)

api接口代码

import uvicorn

from fastapi import FastAPI

from QQ邮箱 import tx_start

app = FastAPI()

@app.post("/silde/tx")

def tx_pass(aid: str, proxy: str):

#调用tx滑块的方法

result = tx_start(aid, proxy)

return result

if name == 'main':

uvicorn.run(app="tx_api:app", host='127.0.0.1', port=5000, reload=True, workers=4)

仅供参考学习

相关推荐
微信开发api-视频号协议10 小时前
常见的微信个人号二次开发功能
微信
小灿同学啊15 小时前
Pycharm中conda虚拟环境下软件包的安装
ide·经验分享·笔记·pycharm·conda
kylinmin15 小时前
智慧医疗数据集
经验分享
Sherlock Ma17 小时前
HTML零基础入门笔记:狂神版
前端·经验分享·笔记·html·html5·学习方法·改行学it
中国新闻18 小时前
谢志辉和他的《韵之队诗集》:探寻生活与梦想交织的诗意世界
其他
泉城老铁19 小时前
springboot 如何实现微信扫码登录
微信
努力的搬砖人.1 天前
nginx管理nacos集群地址
java·经验分享·后端
计算机小手1 天前
高效网页截图利器:支持长截图、异步加载内容截图、API调用、Docker一键部署!
经验分享·开源软件
跨境卫士-小田1 天前
亚马逊算法重构消费市场:解码2024年Q1北美站热搜商品的底层逻辑
经验分享
李长太1 天前
如何记录日常笔记
其他