ipad协议滑块详解2

请使用python环境进行测试修改编译

改源码进攻学习参考使用,切勿用于非法操作,后果自行承担,与博主无关!!!!!

接口代码1

import hashlib

import json

import re

import time

import ddddocr

import requests

import execjs

import base64

from io import BytesIO

from urllib.parse import urlencode

import os

from PIL import Image

def post_api(img):

with open(img, "rb") as f:

bin_contents = f.read()

heads={

"content-type":"image/png"

}

result = requests.post("http://111.224.107.217:710/ocr", data=bin_contents,headers=heads)

return result.text

def get_img(img1,img2):

new_image = Image.new('RGB', (672, 620), 'white')

new_image.paste(img1, (0, 0))

new_image.paste(img2, (200, 200))

slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)

yuming = "https://t.captcha.qq.com"

headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"

}

def get_slide_data(aid):

#url = "https://ssl.ptlogin2.qq.com/check?regmaster=\&pt_tea=2\&pt_vcode=1\&uin=123456\&appid=716027609\&js_ver=23071715\&js_type=1\&login_sig=lbhSg7DKUcLjie3yZlSOblGe3WdqeOe9X4daUZecV-lhW7DCOcx6Y1wdPUmbnJ6F\&u1=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&r=0.25903945246093674\&pt_uistyle=40\&daid=383\&pt_3rd_aid=102013353\&o1vId=b85257193f7035a52f6144d700801644\&pt_js_version=v1.46.0"

#r = requests.get(url, headers=headers).text

#sid = re.findall(".*?'(.*?)'",r)

#print(sid[6])

url="https://t.captcha.qq.com/cap_union_prehandle?aid={}\&protocol=https\&accver=1\&showtype=popup\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=0\&enableDarkMode=0\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2F007.qq.com%2Fonline.html\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=11\&callback=_aq_426535\&sess=".format(aid)

#url = "https://t.captcha.qq.com/cap_union_prehandle?aid=716027609\&protocol=https\&accver=1\&showtype=embed\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=1\&enableDarkMode=0\&sid="+sid\[6\]+"\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=7\&callback=_aq_380771\&sess="

r = requests.get(url, headers=headers).text[11: -1]

data = json.loads(r)

#print(data)

_data ={}

_data["powCfg"]={}

_data["sid"] = data["sid"]

_data["sess"] = data["sess"]

_data["y"] = data["data"]['dyn_show_info']['fg_elem_list'][1]['init_pos'][1]

#print(_data["y"],"我是y坐标")

_data["powCfg"]["md5"] = data["data"]['comm_captcha_cfg']['pow_cfg']["md5"]

_data["powCfg"]["prefix"] = data["data"]['comm_captcha_cfg']['pow_cfg']["prefix"]

_data["dcFileName"] = data["data"]['comm_captcha_cfg']['tdc_path']

_data["cdnPic1"] = data["data"]['dyn_show_info']['bg_elem_cfg']['img_url']

_data["cdnPic2"] = data["data"]['dyn_show_info']['sprite_url']

print("_data->",_data)

#_data["sid"] = data["sid"]

return _data

def find_slide_notch(url):

css_dict = {

"background-image": url,

"background-position": "-70.8333px -247.917px",

"background-size": "345.06px 313.69px",

"width": "60.7143px",

"height": "60.7143px",

"left": "25.2976px",

"top": "123.958px",

"z-index": "1",

"cursor": "pointer",

"opacity": "1",

}

获取图片并加载为Pillow Image对象

response = requests.get(css_dict["background-image"])

img = Image.open(BytesIO(response.content))

解析CSS中的background-position和background-size属性

bg_position = [float(pos.strip("px")) for pos in css_dict["background-position"].split()]

bg_size = [float(size.strip("px")) for size in css_dict["background-size"].split()]

计算切割区域

x = -bg_position[0] * img.width / bg_size[0]

y = -bg_position[1] * img.height / bg_size[1]

w = float(css_dict["width"].strip("px")) * img.width / bg_size[0]

h = float(css_dict["height"].strip("px")) * img.height / bg_size[1]

切割图片

crop_img = img.crop((x, y, x + w, y + h))

可以将切割后的图片保存到本地

crop_img.save("crop_img.png")

with open("crop_img.png", "rb") as fp:

target_bytes = fp.read()

return target_bytes

def get_slide_distance(tar_img, back_img):

#图片处理 ddddorc处理,怎么处理啊,那种新版本的滑块,返回的阴影是整个

target_bytes = requests.get(tar_img).content

target_bytes = find_slide_notch(tar_img)

background_bytes = requests.get(back_img).content

res = slide.slide_match(target_bytes, background_bytes, simple_target=True)

return res["target"][0]-2, res["target"][1]

def post_data(collect, eks, sess, notch_data, prefix, nonce, sid,ip):

url = "https://t.captcha.qq.com/cap_union_new_verify"

headers = {

"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",

}

ans = "{},{}".format(notch_data[0], notch_data[1])

data = {

"collect":collect,

"tlg":len(collect),

"eks":eks,

"sess":sess,

"pow_answer":prefix,

"pow_calc_time":28,

"ans":[{"elem_id":1,"type":"DynAnswerType_POS","data":ans}]

}

#print(data)

#print(ip)

try:

r = requests.post(url, headers=headers, data=urlencode(data), proxies=ip, timeout=(3))

print(r.text)

return json.loads(r.text)

except:

print("代理ip有问题")

return {}

def sign_md5(params):

"""

对拼接好的字符串进行md5签名

"""

hl = hashlib.md5()

hl.update(params.encode(encoding='utf-8'))

return hl.hexdigest()

def get_ans(prefix, md5_code):

u = 0

while sign_md5(str(prefix) + str(u)) != md5_code:

u += 1

return str(u)

def get_data():

with open("./main.js", "r", encoding="utf-8") as fp:

exec_js = execjs.compile(fp.read())

data = exec_js.call("sign")

return data

def check(ticket, randstr):

print(ticket,randstr)

url = "https://shminorshort.weixin.qq.com/security/secondauth?t=login_verify_entrances/w_tcaptcha_ret\&wechat_real_lang=zh_CN\&aid=2000000038\&clientype=1\&lang=2052\&apptype=undefined\&captype=7\&disturblevel=1\&secticket=1_50849126415703827916983126930139\&pass_ticket=09con7e6%2FLfNNyWYz%2BpNMApotpCkWv3dIq0rMg8J25g6D7c4Iy89Gl4nQFciZiFs8CQdBsOJ48Lmp51KaD4pRQ%3D%3D\&ret=0\&ticket={}\&randstr={}\&step=8".format(ticket,randstr)

headers = {

"accept": "application/json, text/plain, */*",

"accept-encoding": "gzip, deflate",

"accept-language": "zh-CN,zh;q=0.9",

"referer": url,

"sec-fetch-dest": "empty",

"sec-fetch-mode": "cors",

"sec-fetch-site": "same-origin",

"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 NetType/WIFI MicroMessenger/7.0.20.1781(0x6700143B) WindowsWechat(0x6309071d) XWEB/8461 Flue"

}

jieguo = requests.get(url=url,headers=headers).text

print(jieguo,"----->我是提交结果")

def tx_start(aid, ip):

_t = time.time()

slide_data = get_slide_data(aid)

#tdc_js = "https://turing.captcha.qcloud.com/" + slide_data["dcFileName"]

slide_js = requests.get("https://t.captcha.qq.com" + slide_data["dcFileName"], headers=headers).text

img1 = "https://t.captcha.qq.com" + slide_data["cdnPic1"]

img2 = "https://t.captcha.qq.com" + slide_data["cdnPic2"]

print(img1,img2)

#find_slide_notch(img2)

#acc = get_slide_distance(img1,img2)

#print(acc[0],acc[1])

#notch_data = get_slide_distance(img2, img1)

background_bytes = requests.get(img1).content

res = slide.slide_match(background_bytes, find_slide_notch(img2), simple_target=True)

#res["target"][0] - 2, res["target"][1]

print(res)

#heads = {

"content-type": "image/png"

#}

#result = requests.post("http://111.224.107.217:710/ocr", data=background_bytes, headers=heads).text

notch_data =[]

notch_data.append(res["target"][0] - 2)

notch_data.append(res["target"][1])

print("坐标->",notch_data)

md5_code = slide_data["powCfg"]["md5"]

prefix = slide_data["powCfg"]["prefix"]

ans = get_ans(prefix, md5_code)

with open("./JsCode/start.js", "w", encoding="utf-8") as fp:#我好像没这个东西

fp.write(slide_js)

fp.flush()

print("tx------->执行结果")

data = get_data()

collect = data

eks = re_x_url(slide_js, "='", "'")

result = post_data(collect, eks, slide_data["sess"], notch_data, prefix + ans, "", slide_data["sid"],ip)

#print("耗费时间:{}ms".format((time.time() - _t)* 1000))

#判断是否通过滑块

if result["errorCode"] == 0:

ticket = result["ticket"]

randstr = result["randstr"]

check(ticket,randstr)

return result

else:

ipurl = "";

ip = requests.get(ipurl, headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

重试多次退出 需要判断次数 自己补充,等等,ddddocr那个拼接,你复制给我一份

return tx_start(aid, proxies)

def re_x_url(url, start, end, is_raise=True):

id = re.findall(r"{}(.*?){}".format(start, end), url)

if id:

id = id[0]

if is_raise and not id:

print("正则处理数据为空!")

raise IndexError("正则处理数据为空!")

return id

if name == 'main':

for i in range(10):

ipurl = "";#这里传代理

ip = requests.get(ipurl,headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

tx_start("2000000038",proxies)

api接口代码

import uvicorn

from fastapi import FastAPI

from QQ邮箱 import tx_start

app = FastAPI()

@app.post("/silde/tx")

def tx_pass(aid: str, proxy: str):

#调用tx滑块的方法

result = tx_start(aid, proxy)

return result

if name == 'main':

uvicorn.run(app="tx_api:app", host='127.0.0.1', port=5000, reload=True, workers=4)

仅供参考学习

相关推荐
老陈头聊SEO5 小时前
AI驱动的SEO关键词优化秘籍
其他
造梦师阿鹏8 小时前
004.从 API 裸调到 LangChain
经验分享·ai·大模型·ai技术·大模型应用开发
汇能感知21 小时前
摄像头模块在运动相机中的应用
经验分享·笔记·科技
前路不黑暗@1 天前
C语言:操作符详解(二)
c语言·开发语言·经验分享·笔记·学习·学习方法·visual studio
Better Rose1 天前
【数模国奖冲刺】备赛过程中的常见问题
经验分享·数学建模·数模国赛
TeleostNaCl2 天前
OpenWrt 编译 | 一种使用 git submodule 方式实现一键更新多个外部软件包
网络·经验分享·git·智能路由器
天意生信云2 天前
生信分析自学攻略 | R软件和Rstudio的安装
经验分享·r语言
Vallelonga2 天前
Rust 异步中的 Waker
经验分享·rust·异步·底层
ye150127774552 天前
DC6v-36V转3.2V1A恒流驱动芯片WT7017
单片机·嵌入式硬件·其他
WBluuue2 天前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法