ipad协议滑块详解2

请使用python环境进行测试修改编译

改源码进攻学习参考使用,切勿用于非法操作,后果自行承担,与博主无关!!!!!

接口代码1

import hashlib

import json

import re

import time

import ddddocr

import requests

import execjs

import base64

from io import BytesIO

from urllib.parse import urlencode

import os

from PIL import Image

def post_api(img):

with open(img, "rb") as f:

bin_contents = f.read()

heads={

"content-type":"image/png"

}

result = requests.post("http://111.224.107.217:710/ocr", data=bin_contents,headers=heads)

return result.text

def get_img(img1,img2):

new_image = Image.new('RGB', (672, 620), 'white')

new_image.paste(img1, (0, 0))

new_image.paste(img2, (200, 200))

slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)

yuming = "https://t.captcha.qq.com"

headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"

}

def get_slide_data(aid):

#url = "https://ssl.ptlogin2.qq.com/check?regmaster=\&pt_tea=2\&pt_vcode=1\&uin=123456\&appid=716027609\&js_ver=23071715\&js_type=1\&login_sig=lbhSg7DKUcLjie3yZlSOblGe3WdqeOe9X4daUZecV-lhW7DCOcx6Y1wdPUmbnJ6F\&u1=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&r=0.25903945246093674\&pt_uistyle=40\&daid=383\&pt_3rd_aid=102013353\&o1vId=b85257193f7035a52f6144d700801644\&pt_js_version=v1.46.0"

#r = requests.get(url, headers=headers).text

#sid = re.findall(".*?'(.*?)'",r)

#print(sid[6])

url="https://t.captcha.qq.com/cap_union_prehandle?aid={}\&protocol=https\&accver=1\&showtype=popup\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=0\&enableDarkMode=0\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2F007.qq.com%2Fonline.html\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=11\&callback=_aq_426535\&sess=".format(aid)

#url = "https://t.captcha.qq.com/cap_union_prehandle?aid=716027609\&protocol=https\&accver=1\&showtype=embed\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=1\&enableDarkMode=0\&sid="+sid\[6\]+"\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=7\&callback=_aq_380771\&sess="

r = requests.get(url, headers=headers).text[11: -1]

data = json.loads(r)

#print(data)

_data ={}

_data["powCfg"]={}

_data["sid"] = data["sid"]

_data["sess"] = data["sess"]

_data["y"] = data["data"]['dyn_show_info']['fg_elem_list'][1]['init_pos'][1]

#print(_data["y"],"我是y坐标")

_data["powCfg"]["md5"] = data["data"]['comm_captcha_cfg']['pow_cfg']["md5"]

_data["powCfg"]["prefix"] = data["data"]['comm_captcha_cfg']['pow_cfg']["prefix"]

_data["dcFileName"] = data["data"]['comm_captcha_cfg']['tdc_path']

_data["cdnPic1"] = data["data"]['dyn_show_info']['bg_elem_cfg']['img_url']

_data["cdnPic2"] = data["data"]['dyn_show_info']['sprite_url']

print("_data->",_data)

#_data["sid"] = data["sid"]

return _data

def find_slide_notch(url):

css_dict = {

"background-image": url,

"background-position": "-70.8333px -247.917px",

"background-size": "345.06px 313.69px",

"width": "60.7143px",

"height": "60.7143px",

"left": "25.2976px",

"top": "123.958px",

"z-index": "1",

"cursor": "pointer",

"opacity": "1",

}

获取图片并加载为Pillow Image对象

response = requests.get(css_dict["background-image"])

img = Image.open(BytesIO(response.content))

解析CSS中的background-position和background-size属性

bg_position = [float(pos.strip("px")) for pos in css_dict["background-position"].split()]

bg_size = [float(size.strip("px")) for size in css_dict["background-size"].split()]

计算切割区域

x = -bg_position[0] * img.width / bg_size[0]

y = -bg_position[1] * img.height / bg_size[1]

w = float(css_dict["width"].strip("px")) * img.width / bg_size[0]

h = float(css_dict["height"].strip("px")) * img.height / bg_size[1]

切割图片

crop_img = img.crop((x, y, x + w, y + h))

可以将切割后的图片保存到本地

crop_img.save("crop_img.png")

with open("crop_img.png", "rb") as fp:

target_bytes = fp.read()

return target_bytes

def get_slide_distance(tar_img, back_img):

#图片处理 ddddorc处理,怎么处理啊,那种新版本的滑块,返回的阴影是整个

target_bytes = requests.get(tar_img).content

target_bytes = find_slide_notch(tar_img)

background_bytes = requests.get(back_img).content

res = slide.slide_match(target_bytes, background_bytes, simple_target=True)

return res["target"][0]-2, res["target"][1]

def post_data(collect, eks, sess, notch_data, prefix, nonce, sid,ip):

url = "https://t.captcha.qq.com/cap_union_new_verify"

headers = {

"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",

}

ans = "{},{}".format(notch_data[0], notch_data[1])

data = {

"collect":collect,

"tlg":len(collect),

"eks":eks,

"sess":sess,

"pow_answer":prefix,

"pow_calc_time":28,

"ans":[{"elem_id":1,"type":"DynAnswerType_POS","data":ans}]

}

#print(data)

#print(ip)

try:

r = requests.post(url, headers=headers, data=urlencode(data), proxies=ip, timeout=(3))

print(r.text)

return json.loads(r.text)

except:

print("代理ip有问题")

return {}

def sign_md5(params):

"""

对拼接好的字符串进行md5签名

"""

hl = hashlib.md5()

hl.update(params.encode(encoding='utf-8'))

return hl.hexdigest()

def get_ans(prefix, md5_code):

u = 0

while sign_md5(str(prefix) + str(u)) != md5_code:

u += 1

return str(u)

def get_data():

with open("./main.js", "r", encoding="utf-8") as fp:

exec_js = execjs.compile(fp.read())

data = exec_js.call("sign")

return data

def check(ticket, randstr):

print(ticket,randstr)

url = "https://shminorshort.weixin.qq.com/security/secondauth?t=login_verify_entrances/w_tcaptcha_ret\&wechat_real_lang=zh_CN\&aid=2000000038\&clientype=1\&lang=2052\&apptype=undefined\&captype=7\&disturblevel=1\&secticket=1_50849126415703827916983126930139\&pass_ticket=09con7e6%2FLfNNyWYz%2BpNMApotpCkWv3dIq0rMg8J25g6D7c4Iy89Gl4nQFciZiFs8CQdBsOJ48Lmp51KaD4pRQ%3D%3D\&ret=0\&ticket={}\&randstr={}\&step=8".format(ticket,randstr)

headers = {

"accept": "application/json, text/plain, */*",

"accept-encoding": "gzip, deflate",

"accept-language": "zh-CN,zh;q=0.9",

"referer": url,

"sec-fetch-dest": "empty",

"sec-fetch-mode": "cors",

"sec-fetch-site": "same-origin",

"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 NetType/WIFI MicroMessenger/7.0.20.1781(0x6700143B) WindowsWechat(0x6309071d) XWEB/8461 Flue"

}

jieguo = requests.get(url=url,headers=headers).text

print(jieguo,"----->我是提交结果")

def tx_start(aid, ip):

_t = time.time()

slide_data = get_slide_data(aid)

#tdc_js = "https://turing.captcha.qcloud.com/" + slide_data["dcFileName"]

slide_js = requests.get("https://t.captcha.qq.com" + slide_data["dcFileName"], headers=headers).text

img1 = "https://t.captcha.qq.com" + slide_data["cdnPic1"]

img2 = "https://t.captcha.qq.com" + slide_data["cdnPic2"]

print(img1,img2)

#find_slide_notch(img2)

#acc = get_slide_distance(img1,img2)

#print(acc[0],acc[1])

#notch_data = get_slide_distance(img2, img1)

background_bytes = requests.get(img1).content

res = slide.slide_match(background_bytes, find_slide_notch(img2), simple_target=True)

#res["target"][0] - 2, res["target"][1]

print(res)

#heads = {

"content-type": "image/png"

#}

#result = requests.post("http://111.224.107.217:710/ocr", data=background_bytes, headers=heads).text

notch_data =[]

notch_data.append(res["target"][0] - 2)

notch_data.append(res["target"][1])

print("坐标->",notch_data)

md5_code = slide_data["powCfg"]["md5"]

prefix = slide_data["powCfg"]["prefix"]

ans = get_ans(prefix, md5_code)

with open("./JsCode/start.js", "w", encoding="utf-8") as fp:#我好像没这个东西

fp.write(slide_js)

fp.flush()

print("tx------->执行结果")

data = get_data()

collect = data

eks = re_x_url(slide_js, "='", "'")

result = post_data(collect, eks, slide_data["sess"], notch_data, prefix + ans, "", slide_data["sid"],ip)

#print("耗费时间:{}ms".format((time.time() - _t)* 1000))

#判断是否通过滑块

if result["errorCode"] == 0:

ticket = result["ticket"]

randstr = result["randstr"]

check(ticket,randstr)

return result

else:

ipurl = "";

ip = requests.get(ipurl, headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

重试多次退出 需要判断次数 自己补充,等等,ddddocr那个拼接,你复制给我一份

return tx_start(aid, proxies)

def re_x_url(url, start, end, is_raise=True):

id = re.findall(r"{}(.*?){}".format(start, end), url)

if id:

id = id[0]

if is_raise and not id:

print("正则处理数据为空!")

raise IndexError("正则处理数据为空!")

return id

if name == 'main':

for i in range(10):

ipurl = "";#这里传代理

ip = requests.get(ipurl,headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

tx_start("2000000038",proxies)

api接口代码

import uvicorn

from fastapi import FastAPI

from QQ邮箱 import tx_start

app = FastAPI()

@app.post("/silde/tx")

def tx_pass(aid: str, proxy: str):

#调用tx滑块的方法

result = tx_start(aid, proxy)

return result

if name == 'main':

uvicorn.run(app="tx_api:app", host='127.0.0.1', port=5000, reload=True, workers=4)

仅供参考学习

相关推荐
技术小赵5 小时前
优化Facebook广告投放的五大关键策略
经验分享
智者知已应修善业10 小时前
【51单片机节日彩灯控制器设计】2022-6-11
c语言·经验分享·笔记·单片机·嵌入式硬件·51单片机
Yo_Becky14 小时前
【PyTorch】PyTorch预训练模型缓存位置迁移,也可拓展应用于其他文件的迁移
人工智能·pytorch·经验分享·笔记·python·程序人生·其他
ONETHING_CLOUD_215 小时前
电脑系统重装有什么用?
经验分享·科技·计算机·电脑·数码
会的全对٩(ˊᗜˋ*)و15 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
future141216 小时前
每日问题总结
经验分享·笔记
LilySesy20 小时前
ABAP+&SFSY-FORMPAGES&变成星号
经验分享·sap·abap·erp系统·smartforms
Allen_LVyingbo21 小时前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
智者知已应修善业1 天前
【51单片机用数码管显示流水灯的种类是按钮控制数码管加一和流水灯】2022-6-14
c语言·经验分享·笔记·单片机·嵌入式硬件·51单片机
孞㐑¥1 天前
Linux之Socket 编程 UDP
linux·服务器·c++·经验分享·笔记·网络协议·udp