ipad协议滑块详解2

请使用python环境进行测试修改编译

改源码进攻学习参考使用,切勿用于非法操作,后果自行承担,与博主无关!!!!!

接口代码1

import hashlib

import json

import re

import time

import ddddocr

import requests

import execjs

import base64

from io import BytesIO

from urllib.parse import urlencode

import os

from PIL import Image

def post_api(img):

with open(img, "rb") as f:

bin_contents = f.read()

heads={

"content-type":"image/png"

}

result = requests.post("http://111.224.107.217:710/ocr", data=bin_contents,headers=heads)

return result.text

def get_img(img1,img2):

new_image = Image.new('RGB', (672, 620), 'white')

new_image.paste(img1, (0, 0))

new_image.paste(img2, (200, 200))

slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)

yuming = "https://t.captcha.qq.com"

headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"

}

def get_slide_data(aid):

#url = "https://ssl.ptlogin2.qq.com/check?regmaster=\&pt_tea=2\&pt_vcode=1\&uin=123456\&appid=716027609\&js_ver=23071715\&js_type=1\&login_sig=lbhSg7DKUcLjie3yZlSOblGe3WdqeOe9X4daUZecV-lhW7DCOcx6Y1wdPUmbnJ6F\&u1=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&r=0.25903945246093674\&pt_uistyle=40\&daid=383\&pt_3rd_aid=102013353\&o1vId=b85257193f7035a52f6144d700801644\&pt_js_version=v1.46.0"

#r = requests.get(url, headers=headers).text

#sid = re.findall(".*?'(.*?)'",r)

#print(sid[6])

url="https://t.captcha.qq.com/cap_union_prehandle?aid={}\&protocol=https\&accver=1\&showtype=popup\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=0\&enableDarkMode=0\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2F007.qq.com%2Fonline.html\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=11\&callback=_aq_426535\&sess=".format(aid)

#url = "https://t.captcha.qq.com/cap_union_prehandle?aid=716027609\&protocol=https\&accver=1\&showtype=embed\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=1\&enableDarkMode=0\&sid="+sid\[6\]+"\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=7\&callback=_aq_380771\&sess="

r = requests.get(url, headers=headers).text[11: -1]

data = json.loads(r)

#print(data)

_data ={}

_data["powCfg"]={}

_data["sid"] = data["sid"]

_data["sess"] = data["sess"]

_data["y"] = data["data"]['dyn_show_info']['fg_elem_list'][1]['init_pos'][1]

#print(_data["y"],"我是y坐标")

_data["powCfg"]["md5"] = data["data"]['comm_captcha_cfg']['pow_cfg']["md5"]

_data["powCfg"]["prefix"] = data["data"]['comm_captcha_cfg']['pow_cfg']["prefix"]

_data["dcFileName"] = data["data"]['comm_captcha_cfg']['tdc_path']

_data["cdnPic1"] = data["data"]['dyn_show_info']['bg_elem_cfg']['img_url']

_data["cdnPic2"] = data["data"]['dyn_show_info']['sprite_url']

print("_data->",_data)

#_data["sid"] = data["sid"]

return _data

def find_slide_notch(url):

css_dict = {

"background-image": url,

"background-position": "-70.8333px -247.917px",

"background-size": "345.06px 313.69px",

"width": "60.7143px",

"height": "60.7143px",

"left": "25.2976px",

"top": "123.958px",

"z-index": "1",

"cursor": "pointer",

"opacity": "1",

}

获取图片并加载为Pillow Image对象

response = requests.get(css_dict["background-image"])

img = Image.open(BytesIO(response.content))

解析CSS中的background-position和background-size属性

bg_position = [float(pos.strip("px")) for pos in css_dict["background-position"].split()]

bg_size = [float(size.strip("px")) for size in css_dict["background-size"].split()]

计算切割区域

x = -bg_position[0] * img.width / bg_size[0]

y = -bg_position[1] * img.height / bg_size[1]

w = float(css_dict["width"].strip("px")) * img.width / bg_size[0]

h = float(css_dict["height"].strip("px")) * img.height / bg_size[1]

切割图片

crop_img = img.crop((x, y, x + w, y + h))

可以将切割后的图片保存到本地

crop_img.save("crop_img.png")

with open("crop_img.png", "rb") as fp:

target_bytes = fp.read()

return target_bytes

def get_slide_distance(tar_img, back_img):

#图片处理 ddddorc处理,怎么处理啊,那种新版本的滑块,返回的阴影是整个

target_bytes = requests.get(tar_img).content

target_bytes = find_slide_notch(tar_img)

background_bytes = requests.get(back_img).content

res = slide.slide_match(target_bytes, background_bytes, simple_target=True)

return res["target"][0]-2, res["target"][1]

def post_data(collect, eks, sess, notch_data, prefix, nonce, sid,ip):

url = "https://t.captcha.qq.com/cap_union_new_verify"

headers = {

"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",

}

ans = "{},{}".format(notch_data[0], notch_data[1])

data = {

"collect":collect,

"tlg":len(collect),

"eks":eks,

"sess":sess,

"pow_answer":prefix,

"pow_calc_time":28,

"ans":[{"elem_id":1,"type":"DynAnswerType_POS","data":ans}]

}

#print(data)

#print(ip)

try:

r = requests.post(url, headers=headers, data=urlencode(data), proxies=ip, timeout=(3))

print(r.text)

return json.loads(r.text)

except:

print("代理ip有问题")

return {}

def sign_md5(params):

"""

对拼接好的字符串进行md5签名

"""

hl = hashlib.md5()

hl.update(params.encode(encoding='utf-8'))

return hl.hexdigest()

def get_ans(prefix, md5_code):

u = 0

while sign_md5(str(prefix) + str(u)) != md5_code:

u += 1

return str(u)

def get_data():

with open("./main.js", "r", encoding="utf-8") as fp:

exec_js = execjs.compile(fp.read())

data = exec_js.call("sign")

return data

def check(ticket, randstr):

print(ticket,randstr)

url = "https://shminorshort.weixin.qq.com/security/secondauth?t=login_verify_entrances/w_tcaptcha_ret\&wechat_real_lang=zh_CN\&aid=2000000038\&clientype=1\&lang=2052\&apptype=undefined\&captype=7\&disturblevel=1\&secticket=1_50849126415703827916983126930139\&pass_ticket=09con7e6%2FLfNNyWYz%2BpNMApotpCkWv3dIq0rMg8J25g6D7c4Iy89Gl4nQFciZiFs8CQdBsOJ48Lmp51KaD4pRQ%3D%3D\&ret=0\&ticket={}\&randstr={}\&step=8".format(ticket,randstr)

headers = {

"accept": "application/json, text/plain, */*",

"accept-encoding": "gzip, deflate",

"accept-language": "zh-CN,zh;q=0.9",

"referer": url,

"sec-fetch-dest": "empty",

"sec-fetch-mode": "cors",

"sec-fetch-site": "same-origin",

"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 NetType/WIFI MicroMessenger/7.0.20.1781(0x6700143B) WindowsWechat(0x6309071d) XWEB/8461 Flue"

}

jieguo = requests.get(url=url,headers=headers).text

print(jieguo,"----->我是提交结果")

def tx_start(aid, ip):

_t = time.time()

slide_data = get_slide_data(aid)

#tdc_js = "https://turing.captcha.qcloud.com/" + slide_data["dcFileName"]

slide_js = requests.get("https://t.captcha.qq.com" + slide_data["dcFileName"], headers=headers).text

img1 = "https://t.captcha.qq.com" + slide_data["cdnPic1"]

img2 = "https://t.captcha.qq.com" + slide_data["cdnPic2"]

print(img1,img2)

#find_slide_notch(img2)

#acc = get_slide_distance(img1,img2)

#print(acc[0],acc[1])

#notch_data = get_slide_distance(img2, img1)

background_bytes = requests.get(img1).content

res = slide.slide_match(background_bytes, find_slide_notch(img2), simple_target=True)

#res["target"][0] - 2, res["target"][1]

print(res)

#heads = {

"content-type": "image/png"

#}

#result = requests.post("http://111.224.107.217:710/ocr", data=background_bytes, headers=heads).text

notch_data =[]

notch_data.append(res["target"][0] - 2)

notch_data.append(res["target"][1])

print("坐标->",notch_data)

md5_code = slide_data["powCfg"]["md5"]

prefix = slide_data["powCfg"]["prefix"]

ans = get_ans(prefix, md5_code)

with open("./JsCode/start.js", "w", encoding="utf-8") as fp:#我好像没这个东西

fp.write(slide_js)

fp.flush()

print("tx------->执行结果")

data = get_data()

collect = data

eks = re_x_url(slide_js, "='", "'")

result = post_data(collect, eks, slide_data["sess"], notch_data, prefix + ans, "", slide_data["sid"],ip)

#print("耗费时间:{}ms".format((time.time() - _t)* 1000))

#判断是否通过滑块

if result["errorCode"] == 0:

ticket = result["ticket"]

randstr = result["randstr"]

check(ticket,randstr)

return result

else:

ipurl = "";

ip = requests.get(ipurl, headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

重试多次退出 需要判断次数 自己补充,等等,ddddocr那个拼接,你复制给我一份

return tx_start(aid, proxies)

def re_x_url(url, start, end, is_raise=True):

id = re.findall(r"{}(.*?){}".format(start, end), url)

if id:

id = id[0]

if is_raise and not id:

print("正则处理数据为空!")

raise IndexError("正则处理数据为空!")

return id

if name == 'main':

for i in range(10):

ipurl = "";#这里传代理

ip = requests.get(ipurl,headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

tx_start("2000000038",proxies)

api接口代码

import uvicorn

from fastapi import FastAPI

from QQ邮箱 import tx_start

app = FastAPI()

@app.post("/silde/tx")

def tx_pass(aid: str, proxy: str):

#调用tx滑块的方法

result = tx_start(aid, proxy)

return result

if name == 'main':

uvicorn.run(app="tx_api:app", host='127.0.0.1', port=5000, reload=True, workers=4)

仅供参考学习

相关推荐
我命由我123456 小时前
Photoshop - Photoshop 工具栏(10)透视裁剪工具
经验分享·笔记·学习·ui·职场和发展·职场发展·photoshop
玉石观沧海6 小时前
高压变频器故障代码解析F67 F68
运维·经验分享·笔记·分布式·深度学习
Metaphor6927 小时前
Java 实战:为 Word 文档中的文本与段落添加边框
经验分享
Stanford_11068 小时前
关于嵌入式硬件需要了解的基础知识
开发语言·c++·嵌入式硬件·微信小程序·微信公众平台·twitter·微信开放平台
冬夜戏雪9 小时前
记录下C盘清理步骤(有效)
经验分享·笔记
Metaphor69211 小时前
Java 将 HTML 转换为 Word:告别手动复制粘贴
java·经验分享·html·word
计算机小手14 小时前
推荐一个 GitHub 开源项目信息卡片生成工具,支持Docker快速部署和API调用
经验分享·docker·github·开源软件
聪明的笨猪猪16 小时前
Java Spring “Bean” 面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
progalchemist1 天前
Quick SwiftObjective-C测试框架入门教程
开发语言·其他·objective-c·swift
湖南人爱科技有限公司1 天前
RaPhp和Python某音最新bd-ticket-guard-client-data加密算法解析(视频评论)
android·python·php·音视频·爬山算法·raphp