ipad协议滑块详解2

请使用python环境进行测试修改编译

改源码进攻学习参考使用,切勿用于非法操作,后果自行承担,与博主无关!!!!!

接口代码1

import hashlib

import json

import re

import time

import ddddocr

import requests

import execjs

import base64

from io import BytesIO

from urllib.parse import urlencode

import os

from PIL import Image

def post_api(img):

with open(img, "rb") as f:

bin_contents = f.read()

heads={

"content-type":"image/png"

}

result = requests.post("http://111.224.107.217:710/ocr", data=bin_contents,headers=heads)

return result.text

def get_img(img1,img2):

new_image = Image.new('RGB', (672, 620), 'white')

new_image.paste(img1, (0, 0))

new_image.paste(img2, (200, 200))

slide = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)

yuming = "https://t.captcha.qq.com"

headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"

}

def get_slide_data(aid):

#url = "https://ssl.ptlogin2.qq.com/check?regmaster=\&pt_tea=2\&pt_vcode=1\&uin=123456\&appid=716027609\&js_ver=23071715\&js_type=1\&login_sig=lbhSg7DKUcLjie3yZlSOblGe3WdqeOe9X4daUZecV-lhW7DCOcx6Y1wdPUmbnJ6F\&u1=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&r=0.25903945246093674\&pt_uistyle=40\&daid=383\&pt_3rd_aid=102013353\&o1vId=b85257193f7035a52f6144d700801644\&pt_js_version=v1.46.0"

#r = requests.get(url, headers=headers).text

#sid = re.findall(".*?'(.*?)'",r)

#print(sid[6])

url="https://t.captcha.qq.com/cap_union_prehandle?aid={}\&protocol=https\&accver=1\&showtype=popup\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=0\&enableDarkMode=0\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2F007.qq.com%2Fonline.html\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=11\&callback=_aq_426535\&sess=".format(aid)

#url = "https://t.captcha.qq.com/cap_union_prehandle?aid=716027609\&protocol=https\&accver=1\&showtype=embed\&ua=TW96aWxsYS81LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzExNi4wLjAuMCBTYWZhcmkvNTM3LjM2\&noheader=1\&fb=1\&aged=0\&enableAged=1\&enableDarkMode=0\&sid="+sid\[6\]+"\&grayscale=1\&clientype=2\&cap_cd=\&uid=\&lang=zh-cn\&entry_url=https%3A%2F%2Fgraph.qq.com%2Foauth2.0%2Flogin_jump\&elder_captcha=0\&js=%2Ftcaptcha-frame.7f61d9f7.js\&login_appid=\&wb=2\&subsid=7\&callback=_aq_380771\&sess="

r = requests.get(url, headers=headers).text[11: -1]

data = json.loads(r)

#print(data)

_data ={}

_data["powCfg"]={}

_data["sid"] = data["sid"]

_data["sess"] = data["sess"]

_data["y"] = data["data"]['dyn_show_info']['fg_elem_list'][1]['init_pos'][1]

#print(_data["y"],"我是y坐标")

_data["powCfg"]["md5"] = data["data"]['comm_captcha_cfg']['pow_cfg']["md5"]

_data["powCfg"]["prefix"] = data["data"]['comm_captcha_cfg']['pow_cfg']["prefix"]

_data["dcFileName"] = data["data"]['comm_captcha_cfg']['tdc_path']

_data["cdnPic1"] = data["data"]['dyn_show_info']['bg_elem_cfg']['img_url']

_data["cdnPic2"] = data["data"]['dyn_show_info']['sprite_url']

print("_data->",_data)

#_data["sid"] = data["sid"]

return _data

def find_slide_notch(url):

css_dict = {

"background-image": url,

"background-position": "-70.8333px -247.917px",

"background-size": "345.06px 313.69px",

"width": "60.7143px",

"height": "60.7143px",

"left": "25.2976px",

"top": "123.958px",

"z-index": "1",

"cursor": "pointer",

"opacity": "1",

}

获取图片并加载为Pillow Image对象

response = requests.get(css_dict["background-image"])

img = Image.open(BytesIO(response.content))

解析CSS中的background-position和background-size属性

bg_position = [float(pos.strip("px")) for pos in css_dict["background-position"].split()]

bg_size = [float(size.strip("px")) for size in css_dict["background-size"].split()]

计算切割区域

x = -bg_position[0] * img.width / bg_size[0]

y = -bg_position[1] * img.height / bg_size[1]

w = float(css_dict["width"].strip("px")) * img.width / bg_size[0]

h = float(css_dict["height"].strip("px")) * img.height / bg_size[1]

切割图片

crop_img = img.crop((x, y, x + w, y + h))

可以将切割后的图片保存到本地

crop_img.save("crop_img.png")

with open("crop_img.png", "rb") as fp:

target_bytes = fp.read()

return target_bytes

def get_slide_distance(tar_img, back_img):

#图片处理 ddddorc处理,怎么处理啊,那种新版本的滑块,返回的阴影是整个

target_bytes = requests.get(tar_img).content

target_bytes = find_slide_notch(tar_img)

background_bytes = requests.get(back_img).content

res = slide.slide_match(target_bytes, background_bytes, simple_target=True)

return res["target"][0]-2, res["target"][1]

def post_data(collect, eks, sess, notch_data, prefix, nonce, sid,ip):

url = "https://t.captcha.qq.com/cap_union_new_verify"

headers = {

"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",

}

ans = "{},{}".format(notch_data[0], notch_data[1])

data = {

"collect":collect,

"tlg":len(collect),

"eks":eks,

"sess":sess,

"pow_answer":prefix,

"pow_calc_time":28,

"ans":[{"elem_id":1,"type":"DynAnswerType_POS","data":ans}]

}

#print(data)

#print(ip)

try:

r = requests.post(url, headers=headers, data=urlencode(data), proxies=ip, timeout=(3))

print(r.text)

return json.loads(r.text)

except:

print("代理ip有问题")

return {}

def sign_md5(params):

"""

对拼接好的字符串进行md5签名

"""

hl = hashlib.md5()

hl.update(params.encode(encoding='utf-8'))

return hl.hexdigest()

def get_ans(prefix, md5_code):

u = 0

while sign_md5(str(prefix) + str(u)) != md5_code:

u += 1

return str(u)

def get_data():

with open("./main.js", "r", encoding="utf-8") as fp:

exec_js = execjs.compile(fp.read())

data = exec_js.call("sign")

return data

def check(ticket, randstr):

print(ticket,randstr)

url = "https://shminorshort.weixin.qq.com/security/secondauth?t=login_verify_entrances/w_tcaptcha_ret\&wechat_real_lang=zh_CN\&aid=2000000038\&clientype=1\&lang=2052\&apptype=undefined\&captype=7\&disturblevel=1\&secticket=1_50849126415703827916983126930139\&pass_ticket=09con7e6%2FLfNNyWYz%2BpNMApotpCkWv3dIq0rMg8J25g6D7c4Iy89Gl4nQFciZiFs8CQdBsOJ48Lmp51KaD4pRQ%3D%3D\&ret=0\&ticket={}\&randstr={}\&step=8".format(ticket,randstr)

headers = {

"accept": "application/json, text/plain, */*",

"accept-encoding": "gzip, deflate",

"accept-language": "zh-CN,zh;q=0.9",

"referer": url,

"sec-fetch-dest": "empty",

"sec-fetch-mode": "cors",

"sec-fetch-site": "same-origin",

"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 NetType/WIFI MicroMessenger/7.0.20.1781(0x6700143B) WindowsWechat(0x6309071d) XWEB/8461 Flue"

}

jieguo = requests.get(url=url,headers=headers).text

print(jieguo,"----->我是提交结果")

def tx_start(aid, ip):

_t = time.time()

slide_data = get_slide_data(aid)

#tdc_js = "https://turing.captcha.qcloud.com/" + slide_data["dcFileName"]

slide_js = requests.get("https://t.captcha.qq.com" + slide_data["dcFileName"], headers=headers).text

img1 = "https://t.captcha.qq.com" + slide_data["cdnPic1"]

img2 = "https://t.captcha.qq.com" + slide_data["cdnPic2"]

print(img1,img2)

#find_slide_notch(img2)

#acc = get_slide_distance(img1,img2)

#print(acc[0],acc[1])

#notch_data = get_slide_distance(img2, img1)

background_bytes = requests.get(img1).content

res = slide.slide_match(background_bytes, find_slide_notch(img2), simple_target=True)

#res["target"][0] - 2, res["target"][1]

print(res)

#heads = {

"content-type": "image/png"

#}

#result = requests.post("http://111.224.107.217:710/ocr", data=background_bytes, headers=heads).text

notch_data =[]

notch_data.append(res["target"][0] - 2)

notch_data.append(res["target"][1])

print("坐标->",notch_data)

md5_code = slide_data["powCfg"]["md5"]

prefix = slide_data["powCfg"]["prefix"]

ans = get_ans(prefix, md5_code)

with open("./JsCode/start.js", "w", encoding="utf-8") as fp:#我好像没这个东西

fp.write(slide_js)

fp.flush()

print("tx------->执行结果")

data = get_data()

collect = data

eks = re_x_url(slide_js, "='", "'")

result = post_data(collect, eks, slide_data["sess"], notch_data, prefix + ans, "", slide_data["sid"],ip)

#print("耗费时间:{}ms".format((time.time() - _t)* 1000))

#判断是否通过滑块

if result["errorCode"] == 0:

ticket = result["ticket"]

randstr = result["randstr"]

check(ticket,randstr)

return result

else:

ipurl = "";

ip = requests.get(ipurl, headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

重试多次退出 需要判断次数 自己补充,等等,ddddocr那个拼接,你复制给我一份

return tx_start(aid, proxies)

def re_x_url(url, start, end, is_raise=True):

id = re.findall(r"{}(.*?){}".format(start, end), url)

if id:

id = id[0]

if is_raise and not id:

print("正则处理数据为空!")

raise IndexError("正则处理数据为空!")

return id

if name == 'main':

for i in range(10):

ipurl = "";#这里传代理

ip = requests.get(ipurl,headers=headers).text;

proxies = {

"http": ip,

"https": ip

}

print(proxies)

tx_start("2000000038",proxies)

api接口代码

import uvicorn

from fastapi import FastAPI

from QQ邮箱 import tx_start

app = FastAPI()

@app.post("/silde/tx")

def tx_pass(aid: str, proxy: str):

#调用tx滑块的方法

result = tx_start(aid, proxy)

return result

if name == 'main':

uvicorn.run(app="tx_api:app", host='127.0.0.1', port=5000, reload=True, workers=4)

仅供参考学习

相关推荐
Libraeking5 小时前
视觉篇:Canvas 自定义绘图与高级动画的华丽圆舞曲
android·经验分享·android jetpack
方见华Richard6 小时前
自指-认知几何架构 可行性边界白皮书(务实版)
人工智能·经验分享·交互·原型模式·空间计算
LaughingZhu7 小时前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
浅念-10 小时前
C语言编译与链接全流程:从源码到可执行程序的幕后之旅
c语言·开发语言·数据结构·经验分享·笔记·学习·算法
The森10 小时前
Linux IO 模型纵深解析 01:从 Unix 传统到 Linux 内核的 IO 第一性原理
linux·服务器·c语言·经验分享·笔记·unix
是做服装的同学10 小时前
如何选择适合的服装企业ERP系统才能提升业务效率?
大数据·经验分享·其他
jl486382110 小时前
变比测试仪显示屏的“标杆“配置!如何兼顾30000小时寿命与六角矢量图精准显示?
人工智能·经验分享·嵌入式硬件·物联网·人机交互
三水不滴10 小时前
有 HTTP 了为什么还要有 RPC?
经验分享·笔记·网络协议·计算机网络·http·rpc
熊猫不是猫QAQ11 小时前
如何用AI打造自己的NAS项目,小白向教程,AI编程助手MonkeyCode
经验分享
真正的能量来自内心14 小时前
AD24画图碰到的问题
经验分享