路径规划(二):Dijkstra算法

Dijkstra算法

一、概述

Dijkstra算法是一种用于找到图中最短路径的算法。

二、Dijkstra算法步骤

Dijkstra算法是一种用于求解带权图中单源最短路径的算法。以下是Dijkstra算法的步骤:

  1. 初始化:创建两个数组,一个用于记录每个节点的最短路径长度(dist数组),初始值为无穷大,另一个用于判断节点是否已经被访问(visited数组),初始值为未访问。

  2. 设置起点:将起点的最短路径长度设置为0,并将其标记为已访问。

  3. 更新最短路径:对于起点的所有邻接节点,计算通过起点到达该节点的路径长度,并更新dist数组中的最短路径长度。

  4. 选择最短路径节点:从未访问的节点中选择一个最短路径长度最小的节点,并将其标记为已访问。

  5. 更新其它节点的最短路径:对于刚被访问的节点的邻接节点,计算通过刚被访问的节点到达该邻接节点的路径长度,并更新dist数组中的最短路径长度。

  6. 重复步骤4和5,直到所有节点都被访问。

  7. 最短路径获取:根据dist数组中的最短路径长度,可以得到从起点到其他节点的最短路径。

三、相关代码

下面是用C语言编写的Dijkstra算法的代码示例:

c 复制代码
#include <stdio.h>
#include <stdbool.h>

// 定义无穷大的值
#define INFINITE 9999
#define MAX_NODES 10

// 计算最短路径
void dijkstra(int graph[MAX_NODES][MAX_NODES], int start, int dist[MAX_NODES], bool visited[MAX_NODES]) {
    // 初始化dist数组和visited数组
    for (int i = 0; i < MAX_NODES; i++) {
        dist[i] = INFINITE;
        visited[i] = false;
    }

    // 设置起点的最短路径长度为0
    dist[start] = 0;

    // 寻找最短路径
    for (int count = 0; count < MAX_NODES - 1; count++) {
        int minDist = INFINITE;
        int minDistNode = -1;

        // 选择最短路径长度最小的节点
        for (int i = 0; i < MAX_NODES; i++) {
            if (!visited[i] && dist[i] < minDist) {
                minDist = dist[i];
                minDistNode = i;
            }
        }

        // 标记该节点为已访问
        visited[minDistNode] = true;

        // 更新其他节点的最短路径长度
        for (int i = 0; i < MAX_NODES; i++) {
            if (!visited[i] && graph[minDistNode][i] && dist[minDistNode] != INFINITE &&
                dist[minDistNode] + graph[minDistNode][i] < dist[i]) {
                dist[i] = dist[minDistNode] + graph[minDistNode][i];
            }
        }
    }
}

int main() {
    int graph[MAX_NODES][MAX_NODES] = {
        {0, 4, 0, 0, 0, 0, 0, 8, 0},
        {4, 0, 8, 0, 0, 0, 0, 11, 0},
        {0, 8, 0, 7, 0, 4, 0, 0, 2},
        {0, 0, 7, 0, 9, 14, 0, 0, 0},
        {0, 0, 0, 9, 0, 10, 0, 0, 0},
        {0, 0, 4, 14, 10, 0, 2, 0, 0},
        {0, 0, 0, 0, 0, 2, 0, 1, 6},
        {8, 11, 0, 0, 0, 0, 1, 0, 7},
        {0, 0, 2, 0, 0, 0, 6, 7, 0}
    };

    int start = 0;
    int dist[MAX_NODES];
    bool visited[MAX_NODES];

    dijkstra(graph, start, dist, visited);

    printf("节点\t最短路径长度\n");
    for (int i = 0; i < MAX_NODES; i++) {
        printf("%d\t%d\n", i, dist[i]);
    }

    return 0;
}

以上代码实现了Dijkstra算法的功能,可以计算带有权值的图中从起点到其他节点的最短路径长度。输入的图使用邻接矩阵表示,其中无连接的两个节点之间的距离为0。输出结果为每个节点的最短路径长度。

相关推荐
Kenneth風车12 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)111
算法·机器学习·分类
越甲八千16 分钟前
总结一下数据结构 树 的种类
数据结构
eternal__day20 分钟前
数据结构(哈希表(中)纯概念版)
java·数据结构·算法·哈希算法·推荐算法
APP 肖提莫29 分钟前
MyBatis-Plus分页拦截器,源码的重构(重构total总数的计算逻辑)
java·前端·算法
OTWOL37 分钟前
两道数组有关的OJ练习题
c语言·开发语言·数据结构·c++·算法
不惑_1 小时前
List 集合安全操作指南:避免 ConcurrentModificationException 与提升性能
数据结构·安全·list
qq_433554541 小时前
C++ 面向对象编程:递增重载
开发语言·c++·算法
带多刺的玫瑰1 小时前
Leecode刷题C语言之切蛋糕的最小总开销①
java·数据结构·算法
巫师不要去魔法部乱说2 小时前
PyCharm专项训练5 最短路径算法
python·算法·pycharm
qystca2 小时前
洛谷 P11242 碧树 C语言
数据结构·算法