OpenCV-24双边滤波

一、概念

双边滤波对于图像的边缘信息能够更好的保存。其原理为一个与空间距离 相关的高斯函数与一个灰度距离相关的高斯函数相乘。

空间距离:指的是当前点与中心点的欧式距离。空间域的高斯函数及其数学形式为:

其中(xi,yi)为当前点的位置,(xc,yc)为中心点位置,sigma为空间域标准差。

灰度距离:指的是当前点灰度与中心点灰度的差的绝对值。值域高斯函数及其数学形式为:

其中gray(xi,yi)为当前点的灰度值,gray(xc,yc)为中心点的灰度值,sigma为值域标准差。

双边滤波本质上是高斯滤波,双边滤波和高斯滤波不同的就是:双边滤波既利用率位置信息又利用了像素信息来定义滤波窗口的权重。而高斯滤波只用了位置信息。

对于高斯滤波,仅用空间距离的权值系数与图像卷积后,确定中心点的灰度值。即认为离中心点越近的点,其权重系数越大。

双边滤波加入了对灰度信息的权重,即在邻域内,灰度值越接近中心点灰度值的点权重更大,灰度值相差大的点权重越小,此权重大小,则由值域高斯函数确定。

两者权重系数相乘,得到最终的卷积模板。由于双边滤波需要每个中心点邻域的灰度信息来确定其系数,所以其速度相比较一般的滤波慢的多,而且计算量增长速度为核大小的平方。

双边滤波可以保留边缘,同时可以对边缘内的区域进行平滑处理。(有美颜的效果)

如果在边界出现灰度值变化较大

二、代码演示

使用API---bilateralFilter(src, d, sigmaColor, sigmaSpace[,dst[,borderType]])

--- d相当于卷积核的大小,为整数

--- sigmaColor是计算像素信息使用的sigma

--- sigmaSpace是计算空间信息使用的sigma

示例代码如下:

复制代码
import cv2
import numpy as np

girl = cv2.imread("beautiful women.png")
new_girl = cv2.bilateralFilter(girl, 7, sigmaColor=50, sigmaSpace=50)

cv2.imshow("img", np.hstack((girl, new_girl)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

可以看出,右边的图片人物表面平滑,有美颜效果。

相关推荐
互联网全栈架构30 分钟前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_4652157931 分钟前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_1 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q2 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910133 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go3 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20093 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
老胖闲聊6 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1187 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之7 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2