OpenShift 4 - 在 OpenShift 上运行物体检测 AI 应用

OpenShift / RHEL / DevSecOps 汇总目录

说明:本文已经在 OpenShift 4.14 + RHODS 2.5.0 的环境中验证

说明:请先根据《OpenShift 4 - 部署 OpenShift AI 环境,运行 AI/ML 应用(视频)》一文完成 OpenShift AI 环境的安装。

注意:如无特殊说明,和 OpenShift AI 相关的 Blog 均无需 GPU。

文章目录

部署后端模型

在 Jupyter Notebook 中我们先用本地图片测试一个预先训练好的机器学习模型,然后将该模型的功能封装为一个 REST 服务。在完成本地测后再将物体识别模块部署到 OpenShift 上。

运行后端模型

  1. 在 OpenShift AI 中启动 notebook server 环境,notebook 镜像使用 TensorFlow 2023.2 即可。
  2. 在 Jupyter Notebook 界面中导入 https://github.com/rh-aiservices-bu/object-detection-rest.git 仓库。
  3. 在 Launcher 中进入 Terminal,然后执行以下命令安装 Pillow。
bash 复制代码
(app-root) (app-root) pip install Pillow==9.5.0
Collecting Pillow==9.5.0
  Downloading Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.4/3.4 MB 84.0 MB/s eta 0:00:00
Installing collected packages: Pillow
  Attempting uninstall: Pillow
    Found existing installation: Pillow 10.1.0
    Uninstalling Pillow-10.1.0:
      Successfully uninstalled Pillow-10.1.0
Successfully installed Pillow-9.5.0

[notice] A new release of pip available: 22.2.2 -> 23.3.2
[notice] To update, run: pip install --upgrade pip
  1. 打开 1_explore.ipynb 文件,然后点击 Run > Run All Cells 菜单。
  2. 运行完成后会识别并标记出 twodogs.jpg 图片的 dog。

将后端模型部署为 REST 服务

  1. 根据 Notebook 的说明依次运行 2_predict.ipynb、3_run_flask.ipynb、4_test_flask.ipynb。其中 3_run_flask.ipynb 会在 http://127.0.0.1:5000 提供运行物体识别的 REST 服务。
  2. 在 OpenShift 中创建 object-detect 项目。
  3. 在 OpenShift 的开发者视图中进入 "+添加" > "从 Github 导入",在 Git Repo URL 中填入 https://github.com/rh-aiservices-bu/object-detection-rest.git。在按下图完成配置后点击 "创建"。
  4. 部署完成后可以打开下图 object-detect-rest 路由的地址,将显示 {"status":"ok"},说明 REST 服务正常运行。
  5. 打开 4_test_flask.ipynb 文件,将 my_route 变量的内容改为上图的路由地址,然后再运行该文件并确认可以正常识别图片中的物体。

部署前端应用

  1. 再次使用 "从 Git 导入" 功能部署 https://github.com/rh-aiservices-bu/object-detection-app.git。
    其中需要在部署中增加一个环境变量 OBJECT_DETECTION_URL=http://object-detection-rest:8080/predictions
  2. 完成部署后打开下图 object-detect-ui 路由的地址。
  3. 用带有摄像头的电脑打开 object-detect-ui 路由的地址,然后可拍摄图片确认物体识别结果。

参考

https://redhat-scholars.github.io/rhods-od-workshop/rhods-od-workshop/index.html

相关推荐
l12345sy4 分钟前
Day21_【机器学习—决策树(3)—剪枝】
决策树·机器学习·剪枝
笔触狂放13 分钟前
【机器学习】综合实训(一)
人工智能·机器学习
智算菩萨20 分钟前
国内外最新AI语言模型行情分析2025年9月最新内容
人工智能
ningmengjing_23 分钟前
激活函数:神经网络的“灵魂开关”
人工智能·深度学习·神经网络
Billy_Zuo35 分钟前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归
东风西巷2 小时前
Balabolka:免费高效的文字转语音软件
前端·人工智能·学习·语音识别·软件需求
非门由也2 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy2 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也2 小时前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
即兴小索奇2 小时前
CodePerfAI体验:AI代码性能分析工具如何高效排查性能瓶颈、优化SQL执行耗时?
ai·商业·ai商业洞察·即兴小索奇