yolov5的完整部署(适合新人和懒人,一键安装)

第一步:安装Anaconda

下载并安装后,配置一下镜像

在这里面,看情况输入镜像源,这里我建议大家搞阿里云镜像源。

复制代码
# 添加清华源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
 
# 添加阿里云镜像源
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
 
# 添加中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
 
 
 
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

第二步:安装PyCharm

点击download即可下载。

第三步:创建一个虚拟环境

复制代码
conda create -n yolo01 python=3.8

注意:这里一定要是python3.8,其他版本别去管,这是个天坑,那些博客就知道带偏别人。

创建成功后,直接激活进去。

复制代码
conda activate yolo01

第四步:从github上下载yolov5项目

官网:ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite (github.com)

下载完整代码,并把下面的那个数据集也下载回来。

第五步:让虚拟环境进入yolov5项目页面

复制代码
cd D:\yolov5-master

然后输入下面命令:

复制代码
D:

第六步:安装依赖

复制代码
pip install -r requirements.txt  -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com

第七步:打开Pycharm,配置自己的python

我这个是.exe的,但是你们可能是.bat的,其实都一样。配置一下,就好了。

第八步:运行项目

已成功运行!!!!!!!!

相关推荐
阿崽meitoufa6 小时前
[水果目标检测5]AppleYOLO:基于深度OC-SORT的改进YOLOv8苹果产量估计方法
yolo
weixin_377634846 小时前
【目标检测】特征理解与标注技巧
yolo·目标检测
笑脸惹桃花8 小时前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda
weixin_377634849 小时前
【YOLO】数据增强bug
yolo·bug
youcans_9 小时前
【医学影像 AI】YoloCurvSeg:仅需标注一个带噪骨架即可实现血管状曲线结构分割
人工智能·yolo·计算机视觉·分割·医学影像
m_1368710 小时前
Mac Intel 芯片部署 YOLO(Docker 方式,支持离线打包与 Compose 管理)
yolo·macos·docker
m_1368718 小时前
YOLOv8 在 Intel Mac 上的 Anaconda 一键安装教程
yolo·macos
code bean1 天前
【yolo】YOLOv8 训练模型参数与多机环境差异总结
yolo
arron88991 天前
yolov8部署在一台无显卡的电脑上,实时性强方案
yolo·电脑
Coovally AI模型快速验证1 天前
3D目标跟踪重磅突破!TrackAny3D实现「类别无关」统一建模,多项SOTA达成!
人工智能·yolo·机器学习·3d·目标跟踪·无人机·cocos2d