大模型实战营Day5 作业

基础作业:

  • 使用 LMDeploy 以本地对话、网页Gradio、API服务中的一种方式部署 InternLM-Chat-7B 模型,生成 300 字的小故事(需截图)

TurboMind 推理+命令行本地对话

bash 复制代码
lmdeploy chat turbomind /share/temp/model_repos/internlm-chat-7b/  --model-name internlm-chat-7b

TurboMind推理+API服务

网页 Demo 演示

一个终端

bash 复制代码
lmdeploy serve api_server ./workspace \
> --server_name 0.0.0.0 \
> --server_port 23333 \
> --instance_num 64 \
> --tp 1

另一个终端

bash 复制代码
lmdeploy serve gradio http://0.0.0.0:23333 \
> --server_name 0.0.0.0 \
> --server_port 6006 \
> --restful_api True

进阶作业(可选做)

  • 将第四节课训练自我认知小助手模型使用 LMDeploy 量化部署到 OpenXLab 平台。
  • 对internlm-chat-7b模型进行量化,并同时使用KV Cache量化,使用量化后的模型完成API服务的部署,分别对比模型量化前后和 KV Cache 量化前后的显存大小(将 bs设置为 1 和 max len 设置为512)。
  • 在自己的任务数据集上任取若干条进行Benchmark测试,测试方向包括:
    (1)TurboMind推理+Python代码集成
    (2)在(1)的基础上采用W4A16量化
    (3)在(1)的基础上开启KV Cache量化
    (4)在(2)的基础上开启KV Cache量化
    (5)使用Huggingface推理
相关推荐
兴趣使然黄小黄2 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭2 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t2 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
说私域2 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序
开利网络3 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师3 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
巫婆理发2224 小时前
评估指标+数据不匹配+贝叶斯最优误差(分析方差和偏差)+迁移学习+多任务学习+端到端深度学习
深度学习·学习·迁移学习
熙梦数字化4 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车
刘海东刘海东4 小时前
逻辑方程结构图语言的机器实现(草稿)
人工智能
亮剑20184 小时前
第2节:程序逻辑与控制流——让程序“思考”
开发语言·c++·人工智能