大模型实战营Day5 作业

基础作业:

  • 使用 LMDeploy 以本地对话、网页Gradio、API服务中的一种方式部署 InternLM-Chat-7B 模型,生成 300 字的小故事(需截图)

TurboMind 推理+命令行本地对话

bash 复制代码
lmdeploy chat turbomind /share/temp/model_repos/internlm-chat-7b/  --model-name internlm-chat-7b

TurboMind推理+API服务

网页 Demo 演示

一个终端

bash 复制代码
lmdeploy serve api_server ./workspace \
> --server_name 0.0.0.0 \
> --server_port 23333 \
> --instance_num 64 \
> --tp 1

另一个终端

bash 复制代码
lmdeploy serve gradio http://0.0.0.0:23333 \
> --server_name 0.0.0.0 \
> --server_port 6006 \
> --restful_api True

进阶作业(可选做)

  • 将第四节课训练自我认知小助手模型使用 LMDeploy 量化部署到 OpenXLab 平台。
  • 对internlm-chat-7b模型进行量化,并同时使用KV Cache量化,使用量化后的模型完成API服务的部署,分别对比模型量化前后和 KV Cache 量化前后的显存大小(将 bs设置为 1 和 max len 设置为512)。
  • 在自己的任务数据集上任取若干条进行Benchmark测试,测试方向包括:
    (1)TurboMind推理+Python代码集成
    (2)在(1)的基础上采用W4A16量化
    (3)在(1)的基础上开启KV Cache量化
    (4)在(2)的基础上开启KV Cache量化
    (5)使用Huggingface推理
相关推荐
CountingStars6193 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen11 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝15 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界23 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
wydxry2 小时前
LoRA(Low-Rank Adaptation)模型微调
深度学习
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
洛阳泰山2 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb