大模型实战营Day5 作业

基础作业:

  • 使用 LMDeploy 以本地对话、网页Gradio、API服务中的一种方式部署 InternLM-Chat-7B 模型,生成 300 字的小故事(需截图)

TurboMind 推理+命令行本地对话

bash 复制代码
lmdeploy chat turbomind /share/temp/model_repos/internlm-chat-7b/  --model-name internlm-chat-7b

TurboMind推理+API服务

网页 Demo 演示

一个终端

bash 复制代码
lmdeploy serve api_server ./workspace \
> --server_name 0.0.0.0 \
> --server_port 23333 \
> --instance_num 64 \
> --tp 1

另一个终端

bash 复制代码
lmdeploy serve gradio http://0.0.0.0:23333 \
> --server_name 0.0.0.0 \
> --server_port 6006 \
> --restful_api True

进阶作业(可选做)

  • 将第四节课训练自我认知小助手模型使用 LMDeploy 量化部署到 OpenXLab 平台。
  • 对internlm-chat-7b模型进行量化,并同时使用KV Cache量化,使用量化后的模型完成API服务的部署,分别对比模型量化前后和 KV Cache 量化前后的显存大小(将 bs设置为 1 和 max len 设置为512)。
  • 在自己的任务数据集上任取若干条进行Benchmark测试,测试方向包括:
    (1)TurboMind推理+Python代码集成
    (2)在(1)的基础上采用W4A16量化
    (3)在(1)的基础上开启KV Cache量化
    (4)在(2)的基础上开启KV Cache量化
    (5)使用Huggingface推理
相关推荐
新加坡内哥谈技术5 分钟前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
GOTXX13 分钟前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络
IT古董18 分钟前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
CV学术叫叫兽33 分钟前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
WeeJot嵌入式1 小时前
卷积神经网络:深度学习中的图像识别利器
人工智能
糖豆豆今天也要努力鸭1 小时前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
脆皮泡泡1 小时前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3
机器人虎哥1 小时前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
码银1 小时前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
飞哥数智坊1 小时前
使用扣子实现一个文章收集智能体(升级版)
人工智能