【Python机器学习】SVM——预处理数据

为了解决特征特征数量级差异过大,导致的模型过拟合问题,有一种方法就是对每个特征进行缩放,使其大致处于同一范围。核SVM常用的缩放方法是将所有的特征缩放到0和1之间。

"人工"处理方法:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0)

#计算训练集中每个特征的最小值
min_on_train=X_train.min(axis=0)
#计算训练集中每个特征的范围(最小值-最大值)
range_on_train=(X_train-min_on_train).max(axis=0)
#减去最小值,然后除以范围,这样最大值都是1,最小值都是0
X_train_scales=(X_train-min_on_train)/range_on_train

print('每个特征的最小值:{}'.format(X_train_scales.min(axis=0)))
print('每个特征的最大值:{}'.format(X_train_scales.max(axis=0)))

X_test_scales=(X_test-min_on_train)/range_on_train

svc=SVC(C=1,gamma=1)
svc.fit(X_train_scales,y_train)
print('训练集精度:{:.3f}'.format(svc.score(X_train_scales,y_train)))
print('测试集精度:{:.3f}'.format(svc.score(X_test_scales,y_test)))

可以看到,最终的结果上训练集和测试集的精度都非常好,但还没有接近100%的精度,可能存在欠拟合,后续可以通过调整C参数来继续优化。

相关推荐
roamingcode2 小时前
从混沌到秩序:Git Diff 结构化报告的 Claude Code Skill 实践
人工智能·git·agent·skill·claude code·领域知识包·ai经验复用
天上掉下个牛霸天2 小时前
2025年十大技术趋势前瞻
人工智能·ai
郝学胜-神的一滴2 小时前
Python数据封装与私有属性:保护你的数据安全
linux·服务器·开发语言·python·程序人生
专注数据的痴汉2 小时前
「数据获取」内蒙古地理基础数据(道路、水系、四级行政边界、地级城市、DEM等)
大数据·人工智能·信息可视化
aopstudio2 小时前
HuggingFace Tokenizer 的进化:从分词器到智能对话引擎
人工智能·自然语言处理·llm·huggingface
JQLvopkk2 小时前
全栈可视化数字孪生开发平台阐述
人工智能·自动化
b***25112 小时前
动力电池半自动生产线如何平衡自动化投入与规模化需求
人工智能
Hernon2 小时前
AI智能体 - 优先级排序
大数据·人工智能
智航GIS2 小时前
11.7 使用Pandas 模块中describe()、groupby()进行简单分析
python·pandas
Pyeako3 小时前
机器学习--矿物数据清洗(六种填充方法)
人工智能·python·随机森林·机器学习·pycharm·线性回归·数据清洗