【Python机器学习】SVM——预处理数据

为了解决特征特征数量级差异过大,导致的模型过拟合问题,有一种方法就是对每个特征进行缩放,使其大致处于同一范围。核SVM常用的缩放方法是将所有的特征缩放到0和1之间。

"人工"处理方法:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0)

#计算训练集中每个特征的最小值
min_on_train=X_train.min(axis=0)
#计算训练集中每个特征的范围(最小值-最大值)
range_on_train=(X_train-min_on_train).max(axis=0)
#减去最小值,然后除以范围,这样最大值都是1,最小值都是0
X_train_scales=(X_train-min_on_train)/range_on_train

print('每个特征的最小值:{}'.format(X_train_scales.min(axis=0)))
print('每个特征的最大值:{}'.format(X_train_scales.max(axis=0)))

X_test_scales=(X_test-min_on_train)/range_on_train

svc=SVC(C=1,gamma=1)
svc.fit(X_train_scales,y_train)
print('训练集精度:{:.3f}'.format(svc.score(X_train_scales,y_train)))
print('测试集精度:{:.3f}'.format(svc.score(X_test_scales,y_test)))

可以看到,最终的结果上训练集和测试集的精度都非常好,但还没有接近100%的精度,可能存在欠拟合,后续可以通过调整C参数来继续优化。

相关推荐
方见华Richard4 分钟前
AGI安全三大方向机构对比清单(2025-2026)
人工智能·经验分享·交互·原型模式·空间计算
翱翔的苍鹰7 分钟前
大语言模型发展历程
人工智能·语言模型·自然语言处理
2501_9413297219 分钟前
【AI】使用YOLO11-C3k2-LFEM模型实现车窗识别,精准定位车辆玻璃区域,智能驾驶辅助系统必备技术_1
人工智能
52Hz11820 分钟前
力扣230.二叉搜索树中第k小的元素、199.二叉树的右视图、114.二叉树展开为链表
python·算法·leetcode
喵手21 分钟前
Python爬虫实战:网页截图归档完全指南 - 构建生产级页面存证与历史回溯系统!
爬虫·python·爬虫实战·零基础python爬虫教学·网页截图归档·历史回溯·生产级方案
蘑菇物联28 分钟前
厂区大、公辅车间分散、怎么管?
人工智能·科技
七牛云行业应用29 分钟前
3.5s降至0.4s!Claude Code生产级连接优化与Agent实战
运维·人工智能·大模型·aigc·claude
微软技术分享33 分钟前
Windows 环境下 llama.cpp 编译 + Qwen 模型本地部署全指南
人工智能
张3蜂39 分钟前
Python 四大 Web 框架对比解析:FastAPI、Django、Flask 与 Tornado
前端·python·fastapi