【Python机器学习】SVM——预处理数据

为了解决特征特征数量级差异过大,导致的模型过拟合问题,有一种方法就是对每个特征进行缩放,使其大致处于同一范围。核SVM常用的缩放方法是将所有的特征缩放到0和1之间。

"人工"处理方法:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0)

#计算训练集中每个特征的最小值
min_on_train=X_train.min(axis=0)
#计算训练集中每个特征的范围(最小值-最大值)
range_on_train=(X_train-min_on_train).max(axis=0)
#减去最小值,然后除以范围,这样最大值都是1,最小值都是0
X_train_scales=(X_train-min_on_train)/range_on_train

print('每个特征的最小值:{}'.format(X_train_scales.min(axis=0)))
print('每个特征的最大值:{}'.format(X_train_scales.max(axis=0)))

X_test_scales=(X_test-min_on_train)/range_on_train

svc=SVC(C=1,gamma=1)
svc.fit(X_train_scales,y_train)
print('训练集精度:{:.3f}'.format(svc.score(X_train_scales,y_train)))
print('测试集精度:{:.3f}'.format(svc.score(X_test_scales,y_test)))

可以看到,最终的结果上训练集和测试集的精度都非常好,但还没有接近100%的精度,可能存在欠拟合,后续可以通过调整C参数来继续优化。

相关推荐
莫叫石榴姐7 分钟前
数据开发需求工时如何评估?
大数据·数据仓库·人工智能·数据分析·产品运营
查无此人byebye10 分钟前
实战DDPM扩散模型:MNIST手写数字生成+FID分数计算(完整可运行版)
人工智能·pytorch·python·深度学习·音视频
人工智能研究所12 分钟前
专为 AI 编程而生,智谱发布 GLM-4.7 模型:更强的 AI Coding
人工智能·glm-4.7·智谱 ai
冬奇Lab12 分钟前
一天一个开源项目(第22篇):nanochat - 百元级「最好的 ChatGPT」,Karpathy 的极简 LLM 训练套件
人工智能·gpt·chatgpt
曦云沐13 分钟前
AI 编程助手三强争霸:OpenCode vs Claude Code vs Kimi Code CLI 深度对比
人工智能·claude code·kimi code·open code
好家伙VCC16 分钟前
# 光计算驱动的编程范式革新:用Python实现光子神经网络模拟器在传统电子计算架构逼近物理极限的今天,**光计算**正
java·开发语言·python·神经网络
Dxy123931021620 分钟前
Python使用正则提取字符串中的数字
python
来两个炸鸡腿21 分钟前
【Datawhale组队学习202602】Easy-Vibe task02 认识AI IDE工具
ide·人工智能·学习·大模型
Deepoch30 分钟前
Deepoc具身模型开发板:赋能无人机智能升级,实现自主高效作业
人工智能·科技·机器人·无人机·具身模型·deepoc·无人机爱好者
花果山总钻风33 分钟前
SQLAlchemy各种排序示例
后端·python·中间件