【Python机器学习】SVM——预处理数据

为了解决特征特征数量级差异过大,导致的模型过拟合问题,有一种方法就是对每个特征进行缩放,使其大致处于同一范围。核SVM常用的缩放方法是将所有的特征缩放到0和1之间。

"人工"处理方法:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0)

#计算训练集中每个特征的最小值
min_on_train=X_train.min(axis=0)
#计算训练集中每个特征的范围(最小值-最大值)
range_on_train=(X_train-min_on_train).max(axis=0)
#减去最小值,然后除以范围,这样最大值都是1,最小值都是0
X_train_scales=(X_train-min_on_train)/range_on_train

print('每个特征的最小值:{}'.format(X_train_scales.min(axis=0)))
print('每个特征的最大值:{}'.format(X_train_scales.max(axis=0)))

X_test_scales=(X_test-min_on_train)/range_on_train

svc=SVC(C=1,gamma=1)
svc.fit(X_train_scales,y_train)
print('训练集精度:{:.3f}'.format(svc.score(X_train_scales,y_train)))
print('测试集精度:{:.3f}'.format(svc.score(X_test_scales,y_test)))

可以看到,最终的结果上训练集和测试集的精度都非常好,但还没有接近100%的精度,可能存在欠拟合,后续可以通过调整C参数来继续优化。

相关推荐
三块钱079410 分钟前
如何让AI视频模型(如Veo)开口说中文?一个顶级提示词的深度拆解
人工智能
杜子不疼.17 分钟前
《Python学习之文件操作:从入门到精通》
数据库·python·学习
轻松Ai享生活17 分钟前
从0-1学习CUDA | week 1
人工智能
蒋星熠19 分钟前
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
网络·c++·人工智能·深度学习·性能优化·系统架构
微小的xx23 分钟前
java + html 图片点击文字验证码
java·python·html
wayman_he_何大民23 分钟前
初始机器学习算法 - 关联分析
前端·人工智能
杭州泽沃电子科技有限公司30 分钟前
告别翻山越岭!智能监拍远程守护输电线路安全
运维·人工智能·科技·安全
wayman_he_何大民33 分钟前
初始机器学习算法 - 聚类分析
前端·人工智能
金色旭光33 分钟前
uv 现代化的虚拟环境管理工具
python·python进阶
TDengine (老段)40 分钟前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine