【Python机器学习】SVM——预处理数据

为了解决特征特征数量级差异过大,导致的模型过拟合问题,有一种方法就是对每个特征进行缩放,使其大致处于同一范围。核SVM常用的缩放方法是将所有的特征缩放到0和1之间。

"人工"处理方法:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,random_state=0)

#计算训练集中每个特征的最小值
min_on_train=X_train.min(axis=0)
#计算训练集中每个特征的范围(最小值-最大值)
range_on_train=(X_train-min_on_train).max(axis=0)
#减去最小值,然后除以范围,这样最大值都是1,最小值都是0
X_train_scales=(X_train-min_on_train)/range_on_train

print('每个特征的最小值:{}'.format(X_train_scales.min(axis=0)))
print('每个特征的最大值:{}'.format(X_train_scales.max(axis=0)))

X_test_scales=(X_test-min_on_train)/range_on_train

svc=SVC(C=1,gamma=1)
svc.fit(X_train_scales,y_train)
print('训练集精度:{:.3f}'.format(svc.score(X_train_scales,y_train)))
print('测试集精度:{:.3f}'.format(svc.score(X_test_scales,y_test)))

可以看到,最终的结果上训练集和测试集的精度都非常好,但还没有接近100%的精度,可能存在欠拟合,后续可以通过调整C参数来继续优化。

相关推荐
Python大数据分析@几秒前
python 常用的6个爬虫第三方库
爬虫·python·php
用户87612829073744 分钟前
前端ai对话框架semi-design-vue
前端·人工智能
量子位4 分钟前
稚晖君刚挖来的 90 后机器人大牛:逆袭履历堪比爽文男主
人工智能·llm
一顿操作猛如虎,啥也不是!8 分钟前
JAVA-Spring Boot多线程
开发语言·python
量子位10 分钟前
200 亿机器人独角兽被曝爆雷,官方回应来了
人工智能·llm
机器之心13 分钟前
细节厘米级还原、实时渲染,MTGS方法突破自动驾驶场景重建瓶颈
人工智能
斯内科19 分钟前
Python入门(7):Python序列结构-字典
python·字典·dictionary
云徒川20 分钟前
【设计模式】过滤器模式
windows·python·设计模式
arbboter28 分钟前
【AI插件开发】Notepad++ AI插件开发实践:从Dock窗口集成到功能菜单实现
人工智能·notepad++·动态菜单·notepad++插件开发·dock窗口集成·ai代码辅助工具·ai对话窗口
jndingxin37 分钟前
OpenCV 图形API(或称G-API)(1)
人工智能·opencv·计算机视觉