[学习笔记]刘知远团队大模型技术与交叉应用L1-NLP&Big Model Basics

本节主要介绍NLP和大模型的基础知识。提及了词表示如何从one-hot发展到Word Embedding。语言模型如何从N-gram发展成预训练语言模型PLMs。然后介绍了大模型在NLP任务上的表现,以及它遵循的基本范式。最后介绍了本课程需要用到的编程环境和GPU服务器。

一篇NLP方向的综述推荐

Advances in Natural Language Processing - Julia Hirschberg,Columbia University(见绑定资源)

基本任务和应用

包括词性标注(Part of speech tagging),命名实体识别,共指消解,依赖关系。对于中文,由于词与词没有空格,所以还有一个中文的自动分词的任务。

  • 搜索引擎和广告:如何衡量用户的query与所有document的语义相似度-NLP要解决的问题;利用互联网之间的链接信息判断网站或网页的质量-数据挖掘和信息检索关心的问题
  • Knowledge Graph:知识图谱里有非常多NLP问题,如给定一个用户的查询,如何去匹配或寻找最相关的实体,以及相关知识。如何从大规模文本中挖掘,构建大的知识图谱,如何获取三元组结构化知识,本身也需要NLP技术。
  • Knowledge Graph Application:Question Answering
  • Machine Reading:从文本中抽取结构知识,扩展和更新知识图谱
  • Personal Assistant
  • Machine Translation
  • Sentiment Analysis and Opinion Mining
  • Computational Social Science

词表示

词表示的目标:

1.计算词相似性:相似

2.推断词之间的关系

常用的词表示方式:one-hot表示

这种表示方法的缺点是:任意两个词都是相互正交的。不利于考虑相似性。

基于共现词次数的表示

NLP提出了一种contextual的distribution。

这种表示方法的缺点是:词表越大,存储要求越高;低频词很稀疏,导致不够鲁棒。

Word Embedding

构建一个低维稠密向量空间,学习每个词的低维稠密向量表示。

语言模型(Language Modeling)

语言模型的任务是预测下一个词。

它的工作包括两个:1.一个序列的词成为一句话的概率;2.根据已有的词序列,预测下一个词出现的概率。

基本假设

未来的词只会收到之前词的影响。这样联合概率就可以拆解成如下的条件概率。

N-gram Model

先介绍一种,在深度学习出现前,经典且重要的语言模型构建方式:N-gram。

以4-gram为例,讨论never to late to后面出现wj的概率,可以用语料库中,too late to wj出现的次数除以too late to出现的次数。

需要统计所有出现的n-gram序列的频度。

N-gram的问题是:

1.N一般只会取2或者3:因为取过大的N,序列在语料库中出现的次数会变少,会导致统计结果稀疏。同时过大的N会导致存储的量增大。

2.不能反映词之间的相似性:N-gram是基于符号去做统计,所以对它而言,所有词都是独立的。

神经语言模型

神经语言模型是基于神经网络来学习词的分布式表示的语言模型。

假设当前要预测第t个词为词i的概率,考虑前面n个词:

1.将前面n个词表示成低维向量(从Word Embedding学到的低维稠密向量空间中找到)。

2.拼接上面的低维向量,形成更高的上下文向量。

3.经过非线性转换。

4.利用这个向量来预测下一个词是什么。

所有词的向量,以及整个预测的过程,都是基于神经网络的可调节可学习参数来完成。因此可以利用大规模数据来学习这些向量。

大模型的发展历程

为什么大模型非常重要

在语言理解,语言生成(如对话系统任务)上,预训练语言模型(PLMs)已经比人类表现要好了。

18年开始,PLMs的三个趋势是:更多的参数;更大规模的语料数据;更大规模的分布式计算。这些方式能显著提升模型性能。

GPT-3中,我们可以看到PLMs所涌现出来的人类知识。这说明文本知识会被捕捉到PLMs中,并且在大量参数中存储下来。所以渐渐地,大家会将PLMs作为解决NLP问题的基础工具。

另一方面,GPT-3有很强的零/小样本学习的能力。

大模型背后的范式

预训练阶段,PLMs会从大量无标注数据中进行学习,通过一些自监督任务,去做预训练,从中得到丰富的知识。

在具体应用时候,会引入一些任务相关数据,然后对模型进行微调。

最终保留任务相关的知识。最终得到一个解决具体任务的模型。

编程环境和GPU服务器介绍

相关知识,如Linux命令,Git命令等,需要自己了解。

相关推荐
阿伟来咯~24 分钟前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin1 小时前
Hms?: 1渗透测试
学习·安全·网络安全
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习
Diamond技术流1 小时前
从0开始学习Linux——网络配置
linux·运维·网络·学习·安全·centos
密码小丑1 小时前
11月4日(内网横向移动(一))
笔记
斑布斑布1 小时前
【linux学习2】linux基本命令行操作总结
linux·运维·服务器·学习
鸭鸭梨吖2 小时前
产品经理笔记
笔记·产品经理
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
齐 飞2 小时前
MongoDB笔记01-概念与安装
前端·数据库·笔记·后端·mongodb