傅里叶级数到傅里叶变换

傅里叶级数

定义形式

f ( t ) = 1 2 α 0 + ∑ n = 1 ∞ [ α n c o s ( n ω t ) + β n s i n ( n ω t ) ] f(t)=\frac{1}{2}\alpha_0 + \sum_{n=1}^{\infty}[\alpha_ncos(n\omega t)+\beta_n sin(n \omega t)] f(t)=21α0+n=1∑∞[αncos(nωt)+βnsin(nωt)]

其中 ω = 2 π T \omega = \frac{2\pi}{T} ω=T2π

求解过程

α n = 2 T ∫ − T / 2 T / 2 f ( t ) c o s ( n ω t ) d t \alpha_n=\frac{2}{T}\int_{-T/2}^{T/2}f(t)cos(n\omega t)dt αn=T2∫−T/2T/2f(t)cos(nωt)dt
β n = 2 T ∫ − T / 2 T / 2 f ( t ) s i n ( n ω t ) d t \beta_n=\frac{2}{T}\int_{-T/2}^{T/2}f(t)sin(n\omega t)dt βn=T2∫−T/2T/2f(t)sin(nωt)dt

带入欧拉方程

c o s ( n ω t ) = e j n ω t + e − j n ω t 2 cos(n \omega t)=\frac{e^{j n \omega t}+e^{-j n \omega t}}{2} cos(nωt)=2ejnωt+e−jnωt
s i n ( n ω t ) = e j n ω t − e − j n ω t 2 j sin(n \omega t) = \frac{e^{j n \omega t} - e^{-j n \omega t}}{2j} sin(nωt)=2jejnωt−e−jnωt

上式带入傅里叶级数可得
f ( t ) = α 0 2 + ∑ n = 1 + ∞ ( α n − j β n 2 e j n ω t + α n + j β n 2 e − j n ω t ) f(t)=\frac{\alpha_0}{2} + \sum_{n=1}^{+\infty}\big(\frac{\alpha_n -j \beta_n}{2}e^{j n \omega t} + \frac{\alpha_n+j\beta_n}{2}e^{-j n \omega t}\big) f(t)=2α0+n=1∑+∞(2αn−jβnejnωt+2αn+jβne−jnωt)
= ∑ − ∞ + ∞ ( α n − j β n 2 ) e j n ω t =\sum_{-\infty}^{+\infty}(\frac{\alpha_n-j\beta_n}{2})e^{jn\omega t} =−∞∑+∞(2αn−jβn)ejnωt

整理得:
f ( t ) = 1 T ∑ − ∞ + ∞ [ ∫ − T / 2 T / 2 f ( τ ) e − j n ω τ d τ ] e j n ω t f(t)=\frac{1}{T}\sum_{-\infty}^{+\infty}[\int_{-T/2}^{T/2}f(\tau)e^{-j n \omega \tau}d\tau]e^{j n \omega t} f(t)=T1−∞∑+∞[∫−T/2T/2f(τ)e−jnωτdτ]ejnωt

非周期连续函数处理

当 f f f为非周期函数时可以假设为无穷大
f ( t ) = lim ⁡ T → ∞ 1 T ∑ − ∞ + ∞ [ ∫ − T / 2 T / 2 f ( τ ) e − j n ω τ d τ ] e j n ω t f(t)=\lim_{T \to \infty}\frac{1}{T}\sum_{-\infty}^{+\infty}[\int_{-T/2}^{T/2}f(\tau)e^{-j n \omega \tau}d\tau]e^{j n \omega t} f(t)=T→∞limT1−∞∑+∞[∫−T/2T/2f(τ)e−jnωτdτ]ejnωt
= lim ⁡ T → ∞ 1 T ∑ n = − ∞ + ∞ [ F ( ω n ) e j ω n t ] =\lim_{T \to \infty}\frac{1}{T}\sum_{n=-\infty}^{+\infty}[F(\omega_n)e^{j\omega_nt}] =T→∞limT1n=−∞∑+∞[F(ωn)ejωnt]

以为 T = 2 π / ω T=2\pi / \omega T=2π/ω则上式可以表示为
lim ⁡ ω → 0 1 2 π ∑ n = − ∞ + ∞ [ F ( ω n ) e j ω n t ] d ω n \lim {\omega \to 0}\frac{1}{2\pi}\sum{n=-\infty}^{+\infty}[F(\omega_n)e^{j\omega_nt}]d\omega_n ω→0lim2π1n=−∞∑+∞[F(ωn)ejωnt]dωn
= 1 2 π ∫ − ∞ + ∞ F ( ω n ) e j ω n t d ω n =\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega_n)e^{j \omega_n t}d\omega_n =2π1∫−∞+∞F(ωn)ejωntdωn

F ( ω n ) = lim ⁡ T → ∞ ∫ − T / 2 + T / 2 f ( τ ) e − j n ω τ d τ = ∫ − ∞ + ∞ f ( τ ) e − j ω n τ d τ F(\omega_n)=\lim_{T \to \infty}\int_{- T/2}^{+T/2}f(\tau)e^{-j n \omega \tau}d\tau=\int_{-\infty}^{+\infty}f(\tau)e^{-j\omega_n \tau}d\tau F(ωn)=T→∞lim∫−T/2+T/2f(τ)e−jnωτdτ=∫−∞+∞f(τ)e−jωnτdτ

非连续函数的采样

采样函数如下所示
f s ( t ) = ∑ n = 0 N f ( t ) δ ( t − n T s ) f_s(t)=\sum_{n=0}^{N} f(t)\delta(t-nT_s) fs(t)=n=0∑Nf(t)δ(t−nTs)

其中 f s f_s fs为采样函数, T s T_s Ts为采样周期。函数周期为 N T s NT_s NTs

对其进行傅里叶变换有如下所示:
F s ( ω ) = ∫ 0 ( N − 1 ) T s [ ∑ n = 0 N − 1 f ( t ) δ ( t − n T s ) ] e − j ω t d t F_s(\omega)=\int_{0}^{(N-1)T_s}[\sum_{n=0}^{N-1} f(t)\delta(t-nT_s)]e^{-j \omega t}dt Fs(ω)=∫0(N−1)Ts[n=0∑N−1f(t)δ(t−nTs)]e−jωtdt

由上式可知:
F s ( ω ) = ∑ n = 0 N − 1 f ( n T s ) e − j ω n T s F_s(\omega)=\sum_{n=0}^{N-1}f(nT_s)e^{-j\omega nT_s} Fs(ω)=n=0∑N−1f(nTs)e−jωnTs

其逆变换如下:
f s ( t ) = 1 N T s ∑ ω [ ∑ n = 0 N − 1 f ( n T s ) e − j ω n T s ] e j ω t f_s(t)=\frac{1}{NT_s}\sum_\omega[\sum_{n=0}^{N-1}f(nT_s)e^{-j\omega nT_s}]e^{j\omega t} fs(t)=NTs1ω∑[n=0∑N−1f(nTs)e−jωnTs]ejωt

相关推荐
luofeiju3 小时前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio9 小时前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
FF-Studio1 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
盛寒1 天前
矩阵的定义和运算 线性代数
线性代数
盛寒1 天前
初等变换 线性代数
线性代数
叶子爱分享2 天前
浅谈「线性代数的本质」 - 系列合集
线性代数
luofeiju2 天前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
好开心啊没烦恼2 天前
Python:线性代数,向量内积谐音记忆。
开发语言·python·线性代数·数据挖掘·数据分析
如果你想拥有什么先让自己配得上拥有11 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
Ven%12 天前
矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
人工智能·pytorch·深度学习·线性代数·矩阵·tensor·张量