这一段文字描述来自百度百科:
图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的图像金字塔是一系列以金字塔形状(自下而上)逐步降低,且来源于同一张原始图的图像分辨率集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。
下面的图片也来自百度百科,金字塔就是从塔尖开始一直到塔底,图像的尺寸从小到大一次变化。比如我正常的一张图片是在Level1上,那向上一级就是Level2,尺寸会线性变小;向下一级是Level0,尺寸会线性变大。
说白了图像金字塔就是对原始图像整体放大、缩小,而不改变长宽比例。这是一种图像处理的手段,让图像在不同尺寸下被分析,在机器学习里面,这个手段用的很多。可这跟今天介绍的Emgu.CV有什么关系呢???????其实在Emgu.CV里面,也有按照上面的思路进行图像整体缩放的两个函数, PyrDown()和PyrUp()。
1、下采样PyrDown()
cs
public static void PyrDown(
IInputArray src, // 输入图像
IOutputArray dst, // 输出图像
BorderType borderType = BorderType.Reflect101 // 边界类型,我也不知道有什么用
)
执行一次下采样,就是让图像的宽度、高度都缩小为原来的一半。这个和上面的金字塔图形是反着的:**金字塔越往下越大,Emgu.CV里面名字叫往下的函数,实际是缩小的。**以一张 哈士奇.jpg为例,原始图像宽557,高399,执行一次下采样的代码:
cs
Mat dstMat = srcMat.Clone();
CvInvoke.PyrDown(srcMat, dstMat, BorderType.Default); // 下采样(缩小,长宽各变成原来的0.5倍)
CvInvoke.Imshow("Result Mat, " + dstMat.Size.ToString(), dstMat);
输出的目标图像是:
2、上采样PyrUp()
cs
public static void PyrUp(
IInputArray src, // 输入图像
IOutputArray dst, // 输出图像
BorderType borderType = BorderType.Reflect101 // 边界类型,我也不知道有什么用
)
执行一次上采样,就是让图像的宽度、高度都变成原来的2倍。还是以 哈士奇.jpg为例,原始图像宽557,高399,执行以下代码:
cs
Mat dstMat = srcMat.Clone();
CvInvoke.PyrUp(srcMat, dstMat, BorderType.Default); // 下采样(缩小,长宽各变成原来的0.5倍)
CvInvoke.Imshow("Result Mat, " + dstMat.Size.ToString(), dstMat);
输出的目标图像是:
哈士奇.jpg的原始照片是这样的:
3、总结
- 下采样PyrDown(),图像高度、宽度变成原来的0.5倍。
- 上采样PyrUp() ,图像高度、宽度变成原来的2倍。
原创不易,请勿抄袭。共同进步,相互学习。