【Emgu.CV教程】5.3、几何变换之金字塔变换

这一段文字描述来自百度百科:

图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的图像金字塔是一系列以金字塔形状(自下而上)逐步降低,且来源于同一张原始图的图像分辨率集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。

下面的图片也来自百度百科,金字塔就是从塔尖开始一直到塔底,图像的尺寸从小到大一次变化。比如我正常的一张图片是在Level1上,那向上一级就是Level2,尺寸会线性变小;向下一级是Level0,尺寸会线性变大。

说白了图像金字塔就是对原始图像整体放大、缩小,而不改变长宽比例。这是一种图像处理的手段,让图像在不同尺寸下被分析,在机器学习里面,这个手段用的很多。可这跟今天介绍的Emgu.CV有什么关系呢???????其实在Emgu.CV里面,也有按照上面的思路进行图像整体缩放的两个函数, PyrDown()和PyrUp()。

1、下采样PyrDown()

cs 复制代码
public static void PyrDown(
    IInputArray src, // 输入图像
    IOutputArray dst, // 输出图像
    BorderType borderType = BorderType.Reflect101 // 边界类型,我也不知道有什么用
)

执行一次下采样,就是让图像的宽度、高度都缩小为原来的一半。这个和上面的金字塔图形是反着的:**金字塔越往下越大,Emgu.CV里面名字叫往下的函数,实际是缩小的。**以一张 哈士奇.jpg为例,原始图像宽557,高399,执行一次下采样的代码:

cs 复制代码
Mat dstMat = srcMat.Clone();
CvInvoke.PyrDown(srcMat, dstMat, BorderType.Default); // 下采样(缩小,长宽各变成原来的0.5倍)
CvInvoke.Imshow("Result Mat, " + dstMat.Size.ToString(), dstMat);

输出的目标图像是:

2、上采样PyrUp()

cs 复制代码
public static void PyrUp(
    IInputArray src, // 输入图像
    IOutputArray dst, // 输出图像
    BorderType borderType = BorderType.Reflect101 // 边界类型,我也不知道有什么用
)

执行一次上采样,就是让图像的宽度、高度都变成原来的2倍。还是以 哈士奇.jpg为例,原始图像宽557,高399,执行以下代码:

cs 复制代码
Mat dstMat = srcMat.Clone();
CvInvoke.PyrUp(srcMat, dstMat, BorderType.Default); // 下采样(缩小,长宽各变成原来的0.5倍)
CvInvoke.Imshow("Result Mat, " + dstMat.Size.ToString(), dstMat);

输出的目标图像是:

哈士奇.jpg的原始照片是这样的:

3、总结

  • 下采样PyrDown(),图像高度、宽度变成原来的0.5倍。
  • 上采样PyrUp() ,图像高度、宽度变成原来的2倍。

原创不易,请勿抄袭。共同进步,相互学习。

相关推荐
啊阿狸不会拉杆2 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
量子物理学2 小时前
Modbus TCP
c#·modbus tcp
AI即插即用2 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
人工智能AI技术3 小时前
能用C#开发AI吗?
人工智能·c#
大模型实验室Lab4AI4 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
爱打代码的小林5 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
BZGLOqgZ5 小时前
8位SAR ADC系统架构与功能解析
图像处理
Lun3866buzha6 小时前
【数学表达式识别】基于计算机视觉技术的数学符号与数字识别系统实现_1
人工智能·计算机视觉
自己的九又四分之三站台6 小时前
6. 简单将原生代码改为流式请求
c#
Dyanic6 小时前
DSFuse:一种用于特征保真度的红外与可见光图像融合的双扩散结构
人工智能·机器学习·计算机视觉