【Emgu.CV教程】5.3、几何变换之金字塔变换

这一段文字描述来自百度百科:

图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的图像金字塔是一系列以金字塔形状(自下而上)逐步降低,且来源于同一张原始图的图像分辨率集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。

下面的图片也来自百度百科,金字塔就是从塔尖开始一直到塔底,图像的尺寸从小到大一次变化。比如我正常的一张图片是在Level1上,那向上一级就是Level2,尺寸会线性变小;向下一级是Level0,尺寸会线性变大。

说白了图像金字塔就是对原始图像整体放大、缩小,而不改变长宽比例。这是一种图像处理的手段,让图像在不同尺寸下被分析,在机器学习里面,这个手段用的很多。可这跟今天介绍的Emgu.CV有什么关系呢???????其实在Emgu.CV里面,也有按照上面的思路进行图像整体缩放的两个函数, PyrDown()和PyrUp()。

1、下采样PyrDown()

cs 复制代码
public static void PyrDown(
    IInputArray src, // 输入图像
    IOutputArray dst, // 输出图像
    BorderType borderType = BorderType.Reflect101 // 边界类型,我也不知道有什么用
)

执行一次下采样,就是让图像的宽度、高度都缩小为原来的一半。这个和上面的金字塔图形是反着的:**金字塔越往下越大,Emgu.CV里面名字叫往下的函数,实际是缩小的。**以一张 哈士奇.jpg为例,原始图像宽557,高399,执行一次下采样的代码:

cs 复制代码
Mat dstMat = srcMat.Clone();
CvInvoke.PyrDown(srcMat, dstMat, BorderType.Default); // 下采样(缩小,长宽各变成原来的0.5倍)
CvInvoke.Imshow("Result Mat, " + dstMat.Size.ToString(), dstMat);

输出的目标图像是:

2、上采样PyrUp()

cs 复制代码
public static void PyrUp(
    IInputArray src, // 输入图像
    IOutputArray dst, // 输出图像
    BorderType borderType = BorderType.Reflect101 // 边界类型,我也不知道有什么用
)

执行一次上采样,就是让图像的宽度、高度都变成原来的2倍。还是以 哈士奇.jpg为例,原始图像宽557,高399,执行以下代码:

cs 复制代码
Mat dstMat = srcMat.Clone();
CvInvoke.PyrUp(srcMat, dstMat, BorderType.Default); // 下采样(缩小,长宽各变成原来的0.5倍)
CvInvoke.Imshow("Result Mat, " + dstMat.Size.ToString(), dstMat);

输出的目标图像是:

哈士奇.jpg的原始照片是这样的:

3、总结

  • 下采样PyrDown(),图像高度、宽度变成原来的0.5倍。
  • 上采样PyrUp() ,图像高度、宽度变成原来的2倍。

原创不易,请勿抄袭。共同进步,相互学习。

相关推荐
知舟不叙1 小时前
OpenCV图像形态学详解
人工智能·opencv·计算机视觉·图像形态学
向宇it4 小时前
【unity游戏开发入门到精通——动画篇】Animator反向动力学(IK)
开发语言·unity·c#·编辑器·游戏引擎
Liu_某5 小时前
c# 运用策略模式与模板方法模式实例
c#·策略模式
du fei7 小时前
C# 组件的使用方法
java·开发语言·c#
xiaowu08010 小时前
C# task任务异步编程提高UI的响应性
开发语言·c#
知来者逆18 小时前
YOLO目标检测应用——基于 YOLOv8目标检测和 SAM 零样本分割实现指定目标分割
yolo·目标检测·计算机视觉·图像分割·sam·yolov8
花之亡灵20 小时前
.net6 中实现邮件发送
笔记·c#·.net·代码规范
rrtt_232321 小时前
UE5 尝试接入 C# 脚本方案
ue5·c#·csharp·unrealcsharp
进来有惊喜21 小时前
OpenCV 表情识别
人工智能·opencv·计算机视觉
Eavan努力努力再努力21 小时前
[目标检测]2023ICCV:DiffusionDet: Diffusion Model for Object Detection
人工智能·目标检测·计算机视觉