【技术选型】clickhouse vs starRocks

比对结论

如果只能单机部署的话,clickhouse基本无敌。

如果集群化,starRocks可以替换clickhouse,但支持的函数会相对少一些(clickhouse有不少自定义函数)

信息比对

功能 clickhouse starRocks
join 大表关联容易OOM 对join有相关优化
场景 比较适合大宽表 对于星形或者雪花模型的兼容性更好
并发性 大量短查询,每秒不超过100次 数千用户同时分析查询,部分场景是万级
数据导入更新 相对比较慢,更适合静态数据 秒级的数据导入和实时更新,提供准实时的服务
mysql兼容性 不完全 完全兼容
内置函数 非常丰富。支持窗口和聚合函数,以及table function 支持窗口和聚合函数
部署 单机版无敌,分布式相对不友好 默认分布式,这就意味着需要的资源更多
分布式 需要代码实现部分布式的能力。例如,建表需要先本地表在分布式表,可以类比于物化视图。且数据分布,需要手动分发,不支持自动处理 正常的分布式系统

参考文档

数据仓库系列:StarRocks的简单试用及与clickhouse的对比_starrocks clickhouse对比-CSDN博客
ClickHouse vs StarRocks 选型对比

性能比对

Star Schema Benchmark(以下简称 SSB)是学术界和工业界广泛使用的一个星型模型测试集,通过这个测试集合可以方便的对比各种 OLAP 产品的基础性能指标。ClickHouse 通过改写 SSB,将星型模型打平转化成宽表 (flat table),改造成了一个单表测试 benchmark。本报告记录了 StarRocks、ClickHouse 和 Apache Druid 在 SSB 单表数据集上的性能对比结果,测试结论如下:

  • 在标准测试数据集的 13 个查询上,StarRocks 整体查询性能是 ClickHouse 的 2.1 倍,Apache Druid 的 8.7 倍。
  • StarRocks 启用 Bitmap Index 后整体查询性能是未启用的 1.3 倍,此时整体查询性能是 ClickHouse 的 2.8 倍,Apache Druid 的 11.4 倍。

参考文档

SSB Flat Table 性能测试 | StarRocks

相关推荐
青云交19 分钟前
Java 大视界 -- Java 大数据在智能电网电力市场交易数据分析与策略制定中的关键作用(162)
java·大数据·数据分析·交易策略·智能电网·java 大数据·电力市场交易
宝哥大数据36 分钟前
Flink内存模型--flink1.19.1
大数据·flink
一个天蝎座 白勺 程序猿42 分钟前
大数据(4.5)Hive聚合函数深度解析:从基础统计到多维聚合的12个生产级技巧
大数据·hive·hadoop
爱编程的王小美1 小时前
用户行为分析系统开发文档
大数据
白雪讲堂2 小时前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
浩浩kids3 小时前
Hadoop•踩过的SHIT
大数据·hadoop·分布式
qr9j422333 小时前
elasticsearch 如果按照日期进行筛选
大数据·elasticsearch·jenkins
DavidSoCool3 小时前
es分页边界数据重复问题处理
大数据·elasticsearch·搜索引擎
路由侠内网穿透4 小时前
本地部署开源流处理框架 Apache Flink 并实现外部访问
大数据·网络协议·tcp/ip·flink·服务发现·apache·consul
qq_5470261795 小时前
Elasticsearch 正排索引
大数据·elasticsearch·jenkins