【技术选型】clickhouse vs starRocks

比对结论

如果只能单机部署的话,clickhouse基本无敌。

如果集群化,starRocks可以替换clickhouse,但支持的函数会相对少一些(clickhouse有不少自定义函数)

信息比对

功能 clickhouse starRocks
join 大表关联容易OOM 对join有相关优化
场景 比较适合大宽表 对于星形或者雪花模型的兼容性更好
并发性 大量短查询,每秒不超过100次 数千用户同时分析查询,部分场景是万级
数据导入更新 相对比较慢,更适合静态数据 秒级的数据导入和实时更新,提供准实时的服务
mysql兼容性 不完全 完全兼容
内置函数 非常丰富。支持窗口和聚合函数,以及table function 支持窗口和聚合函数
部署 单机版无敌,分布式相对不友好 默认分布式,这就意味着需要的资源更多
分布式 需要代码实现部分布式的能力。例如,建表需要先本地表在分布式表,可以类比于物化视图。且数据分布,需要手动分发,不支持自动处理 正常的分布式系统

参考文档

数据仓库系列:StarRocks的简单试用及与clickhouse的对比_starrocks clickhouse对比-CSDN博客
ClickHouse vs StarRocks 选型对比

性能比对

Star Schema Benchmark(以下简称 SSB)是学术界和工业界广泛使用的一个星型模型测试集,通过这个测试集合可以方便的对比各种 OLAP 产品的基础性能指标。ClickHouse 通过改写 SSB,将星型模型打平转化成宽表 (flat table),改造成了一个单表测试 benchmark。本报告记录了 StarRocks、ClickHouse 和 Apache Druid 在 SSB 单表数据集上的性能对比结果,测试结论如下:

  • 在标准测试数据集的 13 个查询上,StarRocks 整体查询性能是 ClickHouse 的 2.1 倍,Apache Druid 的 8.7 倍。
  • StarRocks 启用 Bitmap Index 后整体查询性能是未启用的 1.3 倍,此时整体查询性能是 ClickHouse 的 2.8 倍,Apache Druid 的 11.4 倍。

参考文档

SSB Flat Table 性能测试 | StarRocks

相关推荐
翱翔-蓝天2 小时前
ClickHouse
clickhouse
小刘鸭!6 小时前
Flink中并行度和slot的关系——任务和任务槽
大数据·flink
LI JS@你猜啊7 小时前
Elasticsearch 集群
大数据·服务器·elasticsearch
筒栗子7 小时前
复习打卡大数据篇——Hadoop HDFS 03
大数据·hadoop·hdfs
SelectDB10 小时前
Apache Doris 创始人:何为“现代化”的数据仓库?
大数据·数据库·云原生
SelectDB10 小时前
飞轮科技荣获中国电信星海大数据最佳合作伙伴奖!
大数据·数据库·数据分析
小刘鸭!10 小时前
Hbase的特点、特性
大数据·数据库·hbase
Elastic 中国社区官方博客11 小时前
如何通过 Kafka 将数据导入 Elasticsearch
大数据·数据库·分布式·elasticsearch·搜索引擎·kafka·全文检索
nece00111 小时前
elasticsearch 杂记
大数据·elasticsearch·搜索引擎
开心最重要(*^▽^*)11 小时前
Es搭建——单节点——Linux
大数据·elasticsearch