《LIO-SAM阅读笔记》-为何要引入增量式里程计?

前言:

LIO-SAM在后端中同时维护着两个里程计,一个是增量式里程计,一个是优化后的里程计,其中优化后的里程计是经过imu、回环、gps因子图联合优化后的结果,是整个系统中最准确的位姿估计,那么为什么还需要维护增量式里程计呢?

以下是我的理解,不一定正确,如有错误,或者不一样的见解欢迎在评论区留言讨论。

我认为最主要的原因(或者是最大的用途)是需要用增量式里程计信息结合imu预积分信息进行联合的因子图优化,更新IMU偏置。

为何此处要进行联合imu的因子图优化呢?

此处因子图优化可以更新三个变量,分别是:当前帧位姿、速度、IMU偏置。其中前两个完全可以采用后端优化后的里程计信息 ,要比此处优化后的位姿更加准 确,因此这里的因子图优化操作最不可替代的是更新IMU偏置。

那么为什么不采用后端优化后的里程计信息结合imu预积分信息进行联合的因子图优化,更新IMU偏置呢?

增量式里程计是一个平滑的结果不会有大幅度的位姿跳跃,适用于因子图优化时,帧间的位姿变换对imu预积分的约束。而后端优化后的里程计经过联合因子图优化后(尤其是回环时全局的位姿的调整),其帧间的位姿变换幅度可能较大,这样对IMU预积分的约束就起不到什么效果,也就无法准确的更新IMU偏置。

因此我认为,如果不需要更新IMU偏置,在LIO-SAM中完全可以不维护增量式里程计,直接使用后端优化后的位姿联合IMU帧间的预积分结果,就可以发送最终的imu里程计信息。

相关推荐
椰壳也可2 小时前
06_作业基于CubeMx实现按键控制LED灯(裸机)(立芯嵌入式笔记)
笔记·stm32·学习
EQ-雪梨蛋花汤2 小时前
【讨论】VR + 具身智能 + 人形机器人:通往现实世界的智能接口
机器人·vr·具身智能·ai agent·通用人工智能·虚实融合
报错小能手3 小时前
刷题日常 5 二叉树最大深度
算法
Yangy_Jiaojiao3 小时前
开源视觉-语言-动作(VLA)机器人项目全景图(截至 2025 年)
人工智能·机器人
Greedy Alg3 小时前
LeetCode 84. 柱状图中最大的矩形(困难)
算法
im_AMBER3 小时前
Leetcode 52
笔记·学习·算法·leetcode
小欣加油3 小时前
leetcode 946 验证栈序列
c++·算法·leetcode·职场和发展
包饭厅咸鱼4 小时前
PaddleOCR----制作数据集,模型训练,验证 QT部署(未完成)
算法
无敌最俊朗@4 小时前
C++ 并发与同步速查笔记(整理版)
开发语言·c++·算法