《LIO-SAM阅读笔记》-为何要引入增量式里程计?

前言:

LIO-SAM在后端中同时维护着两个里程计,一个是增量式里程计,一个是优化后的里程计,其中优化后的里程计是经过imu、回环、gps因子图联合优化后的结果,是整个系统中最准确的位姿估计,那么为什么还需要维护增量式里程计呢?

以下是我的理解,不一定正确,如有错误,或者不一样的见解欢迎在评论区留言讨论。

我认为最主要的原因(或者是最大的用途)是需要用增量式里程计信息结合imu预积分信息进行联合的因子图优化,更新IMU偏置。

为何此处要进行联合imu的因子图优化呢?

此处因子图优化可以更新三个变量,分别是:当前帧位姿、速度、IMU偏置。其中前两个完全可以采用后端优化后的里程计信息 ,要比此处优化后的位姿更加准 确,因此这里的因子图优化操作最不可替代的是更新IMU偏置。

那么为什么不采用后端优化后的里程计信息结合imu预积分信息进行联合的因子图优化,更新IMU偏置呢?

增量式里程计是一个平滑的结果不会有大幅度的位姿跳跃,适用于因子图优化时,帧间的位姿变换对imu预积分的约束。而后端优化后的里程计经过联合因子图优化后(尤其是回环时全局的位姿的调整),其帧间的位姿变换幅度可能较大,这样对IMU预积分的约束就起不到什么效果,也就无法准确的更新IMU偏置。

因此我认为,如果不需要更新IMU偏置,在LIO-SAM中完全可以不维护增量式里程计,直接使用后端优化后的位姿联合IMU帧间的预积分结果,就可以发送最终的imu里程计信息。

相关推荐
IT猿手20 分钟前
超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
人工智能·算法·机器学习·matlab·无人机
Erik_LinX29 分钟前
算法日记25:01背包(DFS->记忆化搜索->倒叙DP->顺序DP->空间优化)
算法·深度优先
Alidme36 分钟前
cs106x-lecture14(Autumn 2017)-SPL实现
c++·学习·算法·codestepbystep·cs106x
小王努力学编程37 分钟前
【算法与数据结构】单调队列
数据结构·c++·学习·算法·leetcode
最遥远的瞬间39 分钟前
15-贪心算法
算法·贪心算法
非 白1 小时前
【Java】单例模式
java·笔记·单例模式
明阳mark1 小时前
Ansible 学习笔记
笔记·学习·ansible
维齐洛波奇特利(male)1 小时前
(动态规划 完全背包 **)leetcode279完全平方数
算法·动态规划
项目申报小狂人3 小时前
改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)
开发语言·算法·matlab
让我们一起加油好吗3 小时前
【排序算法】六大比较类排序算法——插入排序、选择排序、冒泡排序、希尔排序、快速排序、归并排序【详解】
c语言·算法·排序算法