书生·浦语大模型--第三节课笔记--基于 InternLM 和 LangChain 搭建你的知识库

文章目录

大模型开发范式

LLM的局限性:时效性(最新知识)、专业能力有限(垂直领域)、定制化成本高(个人专属)

两种开发范式:

  • RAG(检索增强生成):外挂知识库,首先匹配知识库文档,交给大模型。优势:成本低,实时更新,不需要训练。但受限于基座模型,知识有限,总结性回答不佳。
  • Finetune(微调):轻量级训练微调,可个性化微调,是一个新的个性化大模型。但是需要在新的数据集上训练,更新成本仍然很高,无法解决实时更新的问题。

RAG

  • 基本思想

LangChain框架:

通过组件组合进行开发,自由构建大模型应用。将私人数据嵌入到组件中。

步骤:首先,Unstructed Loader 组件加载本地文档,将不同格式的文档提取为纯文本格式。通过Text Splitter组件对提取的纯文本进行分割成Chunk。再通过开源词向量模型Sentence Transformer来将文本段转化为向量格式,存储到基于Chroma的向量数据库中,接下来对用户的每个输入会通过Sentence Transformer转为为同样维度的向量,通过在向量数据库中进行相似度匹配找到和用户输入的文本段,将相关的文本段嵌入到已经写好的Prompt Template中,最后交给LLM回答即可。

构建向量数据库

基于个人数据构建向量数据库。LangChain支持自定义LLM,可以直接接入到框架中。

  • 多种数据类型,针对不同类型选取不同加载器,转化为无格式字符串。
  • 由于单个文档超过模型上下文上限,还需要对文档进行切分。
  • 使用向量数据库支持语义检索,需要将文本向量化存入向量数据库

构建检索问答链

自动实现知识检索、Prompt嵌入、LLM问答。

问答性能还有所局限

优化建议

基于语义切分而不是字符串长度。

给每个chunk生成概括性索引。

web 部署

简易框架:Gradio、Streamlit等

实践部分

相关推荐
阿杰学AI4 小时前
AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·transformer·自注意力机制
Dontla4 小时前
黑马大模型RAG与Agent智能体实战教程LangChain提示词——6、提示词工程(提示词优化、few-shot、金融文本信息抽取案例、金融文本匹配案例)
redis·金融·langchain
Hello_Embed4 小时前
libmodbus STM32 主机实验(USB 串口版)
笔记·stm32·学习·嵌入式·freertos·modbus
risc1234564 小时前
思维脚手架
笔记
risc1234565 小时前
只身走过多少的岁月,弹指一梦不过一瞬间
笔记
JaydenAI5 小时前
[LangChain之链]LangChain的Chain——由Runnable构建的管道
python·langchain
草帽lufei5 小时前
LangChain 框架核心向量存储
langchain
猫头虎5 小时前
如何使用Docker部署OpenClaw汉化中文版?
运维·人工智能·docker·容器·langchain·开源·aigc
小陈phd5 小时前
多模态大模型学习笔记(一)——机器学习入门:监督/无监督学习核心任务全解析
笔记·学习·机器学习
崎岖Qiu5 小时前
【计算机网络 | 第九篇】PPP:点对点协议
网络·笔记·计算机网络·ppp