书生·浦语大模型--第三节课笔记--基于 InternLM 和 LangChain 搭建你的知识库

文章目录

大模型开发范式

LLM的局限性:时效性(最新知识)、专业能力有限(垂直领域)、定制化成本高(个人专属)

两种开发范式:

  • RAG(检索增强生成):外挂知识库,首先匹配知识库文档,交给大模型。优势:成本低,实时更新,不需要训练。但受限于基座模型,知识有限,总结性回答不佳。
  • Finetune(微调):轻量级训练微调,可个性化微调,是一个新的个性化大模型。但是需要在新的数据集上训练,更新成本仍然很高,无法解决实时更新的问题。

RAG

  • 基本思想

LangChain框架:

通过组件组合进行开发,自由构建大模型应用。将私人数据嵌入到组件中。

步骤:首先,Unstructed Loader 组件加载本地文档,将不同格式的文档提取为纯文本格式。通过Text Splitter组件对提取的纯文本进行分割成Chunk。再通过开源词向量模型Sentence Transformer来将文本段转化为向量格式,存储到基于Chroma的向量数据库中,接下来对用户的每个输入会通过Sentence Transformer转为为同样维度的向量,通过在向量数据库中进行相似度匹配找到和用户输入的文本段,将相关的文本段嵌入到已经写好的Prompt Template中,最后交给LLM回答即可。

构建向量数据库

基于个人数据构建向量数据库。LangChain支持自定义LLM,可以直接接入到框架中。

  • 多种数据类型,针对不同类型选取不同加载器,转化为无格式字符串。
  • 由于单个文档超过模型上下文上限,还需要对文档进行切分。
  • 使用向量数据库支持语义检索,需要将文本向量化存入向量数据库

构建检索问答链

自动实现知识检索、Prompt嵌入、LLM问答。

问答性能还有所局限

优化建议

基于语义切分而不是字符串长度。

给每个chunk生成概括性索引。

web 部署

简易框架:Gradio、Streamlit等

实践部分

相关推荐
程序员Xu5 小时前
【LeetCode热题100道笔记】二叉树的右视图
笔记·算法·leetcode
程序员Xu7 小时前
【LeetCode热题100道笔记】二叉搜索树中第 K 小的元素
笔记·算法·leetcode
DKPT7 小时前
JVM中如何调优新生代和老生代?
java·jvm·笔记·学习·spring
无难事者若执8 小时前
20250906-01:开始创建LangChain的第一个项目
langchain
我真的是大笨蛋10 小时前
K8S-基础架构
笔记·云原生·容器·kubernetes
亚里随笔10 小时前
VERLTOOL:打通LLM工具强化学习的“任督二脉”,实现多模态多任务统一训练
人工智能·语言模型·llm·agentic
API流转日记10 小时前
对接gemini-2.5-flash-image-preview教程
人工智能·gpt·ai·chatgpt·ai作画
这张生成的图像能检测吗12 小时前
(论文速读)视觉语言模型评价中具有挑战性的选择题的自动生成
人工智能·计算机视觉·语言模型·视觉语言模型
程序员Xu12 小时前
【LeetCode热题100道笔记】腐烂的橘子
笔记·算法·leetcode
IT199512 小时前
Wireshark笔记-DHCP两步交互流程与数据解析
网络·笔记·wireshark