无监督学习 - 均值聚类(K-Means Clustering)

什么是机器学习

K-Means聚类是一种无监督学习算法,用于将数据集分成K个不同的组(簇),每个组内的数据点与组内其他点的相似度较高,而与其他组内的点相似度较低。这是通过迭代地调整簇中心和将数据点分配到最近的簇来实现的。以下是K-Means聚类的基本步骤:

  1. 初始化: 随机选择K个数据点作为初始簇中心,这些点可以是数据集中的实际数据点,或者通过其他初始化方法获得。
  2. 分配到最近的簇: 对于每个数据点,计算其与各个簇中心的距离,并将其分配到距离最近的簇。
  3. 更新簇中心: 对于每个簇,计算其所有数据点的均值,并将该均值作为新的簇中心。
  4. 重复步骤2和步骤3: 重复执行步骤2和步骤3,直到簇中心不再发生显著变化或达到预定的迭代次数。
  5. 输出结果: 最终得到K个簇,每个簇由其均值(簇中心)表示。数据点被分配到这些簇中的一个,形成了聚类结果。

K-Means聚类的优点包括简单、高效,对于大型数据集也是相对可行的。然而,它也有一些缺点,比如对于簇形状不规则或大小差异较大的数据集,表现可能不佳。此外,K值的选择通常需要一些经验或者通过其他方法进行评估,比如肘部法则(Elbow Method)。

下面是使用Python中的scikit-learn库进行K-Means聚类的简单示例:

python 复制代码
from sklearn.cluster import KMeans
import numpy as np

# 生成随机数据集
np.random.seed(42)
data = np.random.rand(100, 2)

# 使用K-Means进行聚类(假设要分成3个簇)
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)

# 获取簇中心和分配结果
centroids = kmeans.cluster_centers_
labels = kmeans.labels_

# 打印结果
print("簇中心:")
print(centroids)
print("\n分配结果:")
print(labels)

这只是一个简单的例子,实际应用中需要根据数据集的特点和需求进行调整和优化。

相关推荐
PLUS_WAVE1 分钟前
CogCoM: A Visual Language Model with Chain-of-Manipulations Reasoning 学习笔记
学习·语言模型·大模型·cot·vlm·推理模型·reasoning
yc_232 分钟前
KAG:通过知识增强生成提升专业领域的大型语言模型(二)
人工智能·语言模型·自然语言处理
绵绵细雨中的乡音9 分钟前
Linux进程学习【环境变量】&&进程优先级
linux·运维·学习
贺函不是涵14 分钟前
【沉浸式求职学习day27】
学习
努力奋斗的小杨14 分钟前
学习MySQL的第十二天
数据库·笔记·学习·mysql·navicat
自不量力的A同学14 分钟前
字节 AI 原生 IDE Trae 发布 v1.3.0,新增 MCP 支持
人工智能
涛涛讲AI20 分钟前
当AI浏览器和AI搜索替代掉传统搜索份额时,老牌的搜索引擎市场何去何从。
人工智能·搜索引擎
engchina28 分钟前
来自B站AIGC科技官的“vLLM简介“视频截图
人工智能·vllm
说私域44 分钟前
基于开源技术体系的品牌赛道力重构:AI智能名片与S2B2C商城小程序源码驱动的品类创新机制研究
人工智能·小程序·重构·开源·零售
智驱力人工智能1 小时前
无感通行与精准管控:AI单元楼安全方案的技术融合实践
人工智能·安全·智慧城市·智慧园区