datawhale 大模型理论基础 引言

学习地址:大模型理论基础
一、什么是语言模型(Language Model)

语言模型其实是一个概率模型,给每一个句子列表计算一个概率值:

p(x1​,...,xL​)

例如:

p(the, mouse, ate, the, cheese)=0.02,

p(the, cheese ate, the, mouse)=0.01,p(the, cheese ate, the, mouse)=0.01

自回归语言模型(Autoregressive language models)

将一个句子的概率的表示成多个条件概率的相乘

二、信息理论、英语的熵、n-gram模型
2.1 信息熵:

信息熵也叫香侬熵,在物理上表示不确定性,熵越大,不确定性越高,包含的信息就越多。

2.2 交叉熵:

用来评估真实数据分布�p的样本的(语言)模型�q之间的差距

2.3 N-gram模型

在一个n-gram模型中,关于Xi​的预测只依赖于最后的 n−1 个字符 ,即Xi−(n−1):i−1​ ,而不是整个历史:

比如:n = 3

n 太小,那么模型将无法捕获长距离的依赖关系,

n太大,无法得到一个好的概率评估

三、大模型
3.1 强大的生成能力

在给定提示的情况下生成完成的文本: prompt -> task competion

3.2 具备一定的推理能力

目前开源的GPT3.5,4.0已经具备了一些逻辑推理能力,能够独立完成一些任务

3.3 风险

当然大模型还存在一些风险:

比如:

可靠性不能保证,可能输出的一段一本正经的乱说

可能生成社会偏见,或者带有侮辱等一些道德方面的文本

相关推荐
OpenVINO生态社区1 分钟前
【机器人创新创业应需明确产品定位与方向指南】
人工智能·机器人
云惠科技(SEO)24 分钟前
泛目录站群技术架构演进观察:2025年PHP+Java混合方案实战笔记
java·人工智能·搜索引擎
Jamence31 分钟前
多模态大语言模型arxiv论文略读(二十四)
人工智能·计算机视觉·语言模型
QQ_77813297440 分钟前
从文本到视频:基于扩散模型的AI生成系统全解析(附PyTorch实现)
人工智能·pytorch·python
ljd2103231241 小时前
opencv函数展示2
人工智能·opencv·计算机视觉
戈云 11061 小时前
Spark-SQL
人工智能·spark
明明真系叻1 小时前
2025.4.20机器学习笔记:文献阅读
人工智能·笔记·机器学习
学术小八2 小时前
2025年机电一体化、机器人与人工智能国际学术会议(MRAI 2025)
人工智能·机器人·机电
爱的叹息2 小时前
关于 雷达(Radar) 的详细解析,涵盖其定义、工作原理、分类、关键技术、应用场景、挑战及未来趋势,结合实例帮助理解其核心概念
人工智能·分类·数据挖掘
许泽宇的技术分享2 小时前
.NET MCP 文档
人工智能·.net