datawhale 大模型理论基础 引言

学习地址:大模型理论基础
一、什么是语言模型(Language Model)

语言模型其实是一个概率模型,给每一个句子列表计算一个概率值:

p(x1​,...,xL​)

例如:

p(the, mouse, ate, the, cheese)=0.02,

p(the, cheese ate, the, mouse)=0.01,p(the, cheese ate, the, mouse)=0.01

自回归语言模型(Autoregressive language models)

将一个句子的概率的表示成多个条件概率的相乘

二、信息理论、英语的熵、n-gram模型
2.1 信息熵:

信息熵也叫香侬熵,在物理上表示不确定性,熵越大,不确定性越高,包含的信息就越多。

2.2 交叉熵:

用来评估真实数据分布�p的样本的(语言)模型�q之间的差距

2.3 N-gram模型

在一个n-gram模型中,关于Xi​的预测只依赖于最后的 n−1 个字符 ,即Xi−(n−1):i−1​ ,而不是整个历史:

比如:n = 3

n 太小,那么模型将无法捕获长距离的依赖关系,

n太大,无法得到一个好的概率评估

三、大模型
3.1 强大的生成能力

在给定提示的情况下生成完成的文本: prompt -> task competion

3.2 具备一定的推理能力

目前开源的GPT3.5,4.0已经具备了一些逻辑推理能力,能够独立完成一些任务

3.3 风险

当然大模型还存在一些风险:

比如:

可靠性不能保证,可能输出的一段一本正经的乱说

可能生成社会偏见,或者带有侮辱等一些道德方面的文本

相关推荐
会飞的老朱10 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º12 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee14 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º15 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys15 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567815 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子15 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能15 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448716 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile16 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算