datawhale 大模型理论基础 引言

学习地址:大模型理论基础
一、什么是语言模型(Language Model)

语言模型其实是一个概率模型,给每一个句子列表计算一个概率值:

p(x1​,...,xL​)

例如:

p(the, mouse, ate, the, cheese)=0.02,

p(the, cheese ate, the, mouse)=0.01,p(the, cheese ate, the, mouse)=0.01

自回归语言模型(Autoregressive language models)

将一个句子的概率的表示成多个条件概率的相乘

二、信息理论、英语的熵、n-gram模型
2.1 信息熵:

信息熵也叫香侬熵,在物理上表示不确定性,熵越大,不确定性越高,包含的信息就越多。

2.2 交叉熵:

用来评估真实数据分布�p的样本的(语言)模型�q之间的差距

2.3 N-gram模型

在一个n-gram模型中,关于Xi​的预测只依赖于最后的 n−1 个字符 ,即Xi−(n−1):i−1​ ,而不是整个历史:

比如:n = 3

n 太小,那么模型将无法捕获长距离的依赖关系,

n太大,无法得到一个好的概率评估

三、大模型
3.1 强大的生成能力

在给定提示的情况下生成完成的文本: prompt -> task competion

3.2 具备一定的推理能力

目前开源的GPT3.5,4.0已经具备了一些逻辑推理能力,能够独立完成一些任务

3.3 风险

当然大模型还存在一些风险:

比如:

可靠性不能保证,可能输出的一段一本正经的乱说

可能生成社会偏见,或者带有侮辱等一些道德方面的文本

相关推荐
一水鉴天3 分钟前
整体设计 逻辑系统程序 之29 拼语言+ CNN 框架核心定位、三阶段程序与三种交换模式配套的方案讨论 之2
人工智能·神经网络·cnn
海森大数据4 分钟前
AI破解数学界遗忘谜题:GPT-5重新发现尘封二十年的埃尔德什问题解法
人工智能·gpt
望获linux43 分钟前
【实时Linux实战系列】Linux 内核的实时组调度(Real-Time Group Scheduling)
java·linux·服务器·前端·数据库·人工智能·深度学习
程序员大雄学编程1 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
Dev7z1 小时前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能
万俟淋曦1 小时前
【论文速递】2025年第28周(Jul-06-12)(Robotics/Embodied AI/LLM)
人工智能·ai·机器人·大模型·论文·robotics·具身智能
我是李武涯1 小时前
PyTorch DataLoader 高级用法
人工智能·pytorch·python
每月一号准时摆烂1 小时前
PS基本教学(三)——像素与分辨率的关系以及图片的格式
人工智能·计算机视觉
song150265372981 小时前
全自动视觉检测设备
人工智能·计算机视觉·视觉检测
2501_906519671 小时前
大语言模型的幻觉问题:机理、评估与抑制路径探析
人工智能