机器学习(七) — 决策树

model 4 --- decision tree

1 decision tree

1. component

usage: classification

  1. root node
  2. decision node

2. choose feature on each node

maximize purity (minimize inpurity)

3. stop splitting

  1. a node is 100% on class
  2. splitting a node will result in the tree exceeding a maximum depth
  3. improvement in purity score are below a threshold
  4. number of examples in a node is below a threshold

2 meature of impurity

use entropy( H H H) as a meature of impurity

H ( p ) = − p l o g 2 ( p ) − ( 1 − p ) l o g 2 ( 1 − p ) n o t e : 0 l o g 0 = 0 H(p) = -plog_2(p) - (1-p)log_2(1-p)\\ note: 0log0 = 0 H(p)=−plog2(p)−(1−p)log2(1−p)note:0log0=0

3 information gain

1. definition

i n f o m a t i o n _ g a i n = H ( p r o o t ) − ( w l e f t H ( p l e f t ) + w r i g h t H ( p r i g h t ) ) infomation\_gain = H(p^{root}) - (w^{left}H(p^{left}) + w^{right}H(p^{right})) infomation_gain=H(proot)−(wleftH(pleft)+wrightH(pright))

2. usage

  1. meature the reduction in entropy
  2. a signal of stopping splitting

3. continuous

find the threshold that has the most infomation gain

4 random forest

  1. generating a tree sample
复制代码
given training set of size m
for b = 1 to B:
	use sampling with replacement to create a new training set of size m
	train a decision tree on the training set
  1. randomizing the feature choice: at each node, when choosing a feature to use to split, if n features is available, pick a random subset of k < n(usually k = n k = \sqrt{n} k=n ) features and alow the algorithm to only choose from that subset of features
相关推荐
飞哥数智坊9 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三9 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯10 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet12 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算12 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心13 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar14 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai14 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI14 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear16 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp