如何绘制出图像的色素分布直方图

效果

如图,可以展示出我们的图像的颜色分布直方图,表明的图像的亮和暗

实现可视化色素分布直方图方法

这里我们对我们的灰色图片和彩色图片进行了直方图显示

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b')
plt.plot(hist2, color='r')
plt.show()

注意:记得下载

复制代码
matplotlib包

上面代码里面的color='b'表示我们的直方图是蓝色的,这里可以用b代表blue

python 复制代码
plt.plot(hist1, color='b', label='hist1')

运行结果

会出现这样一个程序

显示的直方图

扩展:给我们的直方图加上名字!

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b',label='hist1')
plt.plot(hist2, color='r',label='hist2')
plt.legend()
plt.show()

加入了

复制代码
plt.legend()
复制代码
plt.plot里面加入了laber属性

效果:

相关推荐
没事儿写两篇8 分钟前
Python 包管理工具-uv
python·uv·开源包管理工具
2501_9414185510 分钟前
基于YOLO11-C3k2-ESC的避雷器外部缺陷检测实现
python
流㶡11 分钟前
Python爬虫:POST与Selenium
爬虫·python·selenium
爱学习的阿磊18 分钟前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
Sagittarius_A*39 分钟前
形态学与多尺度处理:计算机视觉中图像形状与尺度的基础处理框架【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
m0_5613596741 分钟前
使用PyQt5创建现代化的桌面应用程序
jvm·数据库·python
2301_7903009642 分钟前
用Python实现自动化的Web测试(Selenium)
jvm·数据库·python
茶栀(*´I`*)1 小时前
【OpenCV 视觉全栈进阶】核心特征提取:模板匹配与霍夫变换(线/圆检测)深度技术指南
图像处理·opencv·计算机视觉
自可乐1 小时前
LangGraph从入门到精通:构建智能Agent的完整指南
人工智能·python·机器学习