如何绘制出图像的色素分布直方图

效果

如图,可以展示出我们的图像的颜色分布直方图,表明的图像的亮和暗

实现可视化色素分布直方图方法

这里我们对我们的灰色图片和彩色图片进行了直方图显示

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b')
plt.plot(hist2, color='r')
plt.show()

注意:记得下载

复制代码
matplotlib包

上面代码里面的color='b'表示我们的直方图是蓝色的,这里可以用b代表blue

python 复制代码
plt.plot(hist1, color='b', label='hist1')

运行结果

会出现这样一个程序

显示的直方图

扩展:给我们的直方图加上名字!

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b',label='hist1')
plt.plot(hist2, color='r',label='hist2')
plt.legend()
plt.show()

加入了

复制代码
plt.legend()
复制代码
plt.plot里面加入了laber属性

效果:

相关推荐
Hy行者勇哥12 分钟前
Python 与 VS Code 结合操作指南
开发语言·python
大力水手(Popeye)14 分钟前
Pytorch——tensor
人工智能·pytorch·python
飞翔的佩奇4 小时前
【完整源码+数据集+部署教程】表盘指针检测系统源码和数据集:改进yolo11-CA-HSFPN
python·yolo·计算机视觉·数据集·yolo11·表盘指针检测
larance5 小时前
SQLAlchemy 的异步操作来批量保存对象列表
数据库·python
搏博5 小时前
基于Python3.10.6与jieba库的中文分词模型接口在Windows Server 2022上的实现与部署教程
windows·python·自然语言处理·flask·中文分词
lxmyzzs6 小时前
pyqt5无法显示opencv绘制文本和掩码信息
python·qt·opencv
Coovally AI模型快速验证7 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
萧鼎7 小时前
Python pyzmq 库详解:从入门到高性能分布式通信
开发语言·分布式·python
yujkss8 小时前
Python脚本每天爬取微博热搜-终版
开发语言·python
yzx9910138 小时前
小程序开发APP
开发语言·人工智能·python·yolo