如何绘制出图像的色素分布直方图

效果

如图,可以展示出我们的图像的颜色分布直方图,表明的图像的亮和暗

实现可视化色素分布直方图方法

这里我们对我们的灰色图片和彩色图片进行了直方图显示

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b')
plt.plot(hist2, color='r')
plt.show()

注意:记得下载

复制代码
matplotlib包

上面代码里面的color='b'表示我们的直方图是蓝色的,这里可以用b代表blue

python 复制代码
plt.plot(hist1, color='b', label='hist1')

运行结果

会出现这样一个程序

显示的直方图

扩展:给我们的直方图加上名字!

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b',label='hist1')
plt.plot(hist2, color='r',label='hist2')
plt.legend()
plt.show()

加入了

复制代码
plt.legend()
复制代码
plt.plot里面加入了laber属性

效果:

相关推荐
千千寰宇9 分钟前
[Java/Python] Java 基于命令行调用 Python
python·java se-jdk/jvm
T.D.C10 分钟前
【OpenCV】使用opencv找哈士奇的脸
人工智能·opencv·计算机视觉
yvestine1 小时前
自然语言处理——文本表示
人工智能·python·算法·自然语言处理·文本表示
zzc9211 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
编程有点难1 小时前
Python训练打卡Day43
开发语言·python·深度学习
2301_805054561 小时前
Python训练营打卡Day48(2025.6.8)
pytorch·python·深度学习
LjQ20402 小时前
网络爬虫一课一得
开发语言·数据库·python·网络爬虫
哆啦A梦的口袋呀2 小时前
基于Python学习《Head First设计模式》第九章 迭代器和组合模式
python·学习·设计模式
sponge'2 小时前
opencv学习笔记2:卷积、均值滤波、中值滤波
笔记·python·opencv·学习
databook3 小时前
概率图模型:机器学习的结构化概率之道
python·机器学习·scikit-learn