如何绘制出图像的色素分布直方图

效果

如图,可以展示出我们的图像的颜色分布直方图,表明的图像的亮和暗

实现可视化色素分布直方图方法

这里我们对我们的灰色图片和彩色图片进行了直方图显示

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b')
plt.plot(hist2, color='r')
plt.show()

注意:记得下载

复制代码
matplotlib包

上面代码里面的color='b'表示我们的直方图是蓝色的,这里可以用b代表blue

python 复制代码
plt.plot(hist1, color='b', label='hist1')

运行结果

会出现这样一个程序

显示的直方图

扩展:给我们的直方图加上名字!

python 复制代码
import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b',label='hist1')
plt.plot(hist2, color='r',label='hist2')
plt.legend()
plt.show()

加入了

复制代码
plt.legend()
复制代码
plt.plot里面加入了laber属性

效果:

相关推荐
咋吃都不胖lyh4 小时前
小白零基础教程:安装 Conda + VSCode 配置 Python 开发环境
人工智能·python·conda
闲人编程5 小时前
构建一个短链接生成器服务(FastAPI + SQLite)
jvm·python·sqlite·fastapi·生成器·短链接·caodecapsule
杰瑞哥哥5 小时前
标准 Python 项目结构
开发语言·python
西部森林牧歌6 小时前
Arbess零基础学习 - 使用Arbess+GitLab实现Python项目构建/主机部署
python·ci/cd·gitlab·tiklab devops
Jay_Franklin6 小时前
Python中使用sqlite3模块和panel完成SQLite数据库中PDF的写入和读取
数据库·笔记·python·pycharm·sqlite·pdf·py
热爱编程的小白白6 小时前
【Playwright自动化】安装和使用
开发语言·python
听风吟丶6 小时前
Java NIO 深度解析:从 BIO 到 NIO 的演进与实战
开发语言·python
sali-tec6 小时前
C# 基于halcon的视觉工作流-章58-输出点云图
开发语言·人工智能·算法·计算机视觉·c#
yuxb736 小时前
Python基础(一)
笔记·python
QiZhang | UESTC6 小时前
JAVA算法练习题day67
java·python·学习·算法·leetcode