基于Optuna实现多种贝叶斯优化

基于Optuna实现多种贝叶斯优化

Optuna是当前最成熟、最具扩展性的超参数优化框架,相较于传统的bayes_opt,Optuna明显专为机器学习和深度学习而设计。为了满足机器学习开发者的需求,Optuna提供了强大而稳定的API,因此其代码简洁、模块化程度高,是我们介绍的库中最为精简的之一。Optuna的优势在于,它能够与PyTorch、Tensorflow等深度学习框架无缝集成,同时也能与scikit-optimize等sklearn优化库结合使用,因此可适用于各种优化场景。

1 定义目标函数与参数空间

在Optuna中,我们并不需要将参数或参数空间输入目标函数,而是需要直接在目标函数中定义参数空间。

python 复制代码
def optuna_objective(trial):
    
    #定义参数空间
    n_estimators = trial.suggest_int("n_estimators",80,100,1) #整数型,(参数名称,下界,上界,步长)
    max_depth = trial.suggest_int("max_depth",10,25,1)
    max_features = trial.suggest_int("max_features",10,20,1)
    #max_features = trial.suggest_categorical("max_features",["log2","sqrt","auto"]) #字符型
    min_impurity_decrease = trial.suggest_int("min_impurity_decrease",0,5,1)
    #min_impurity_decrease = trial.suggest_float("min_impurity_decrease",0,5,log=False) #浮点型
    
    #定义评估器
    #需要优化的参数由上述参数空间决定
    #不需要优化的参数则直接填写具体值
    reg = RFR(n_estimators = n_estimators
              ,max_depth = max_depth
              ,max_features = max_features
              ,min_impurity_decrease = min_impurity_decrease
              ,random_state=1412
              ,verbose=False
              ,n_jobs=-1
             )
    
    #交叉验证过程,输出负均方根误差(-RMSE)
    #optuna同时支持最大化和最小化,因此如果输出-RMSE,则选择最大化
    #如果选择输出RMSE,则选择最小化
    cv = KFold(n_splits=5,shuffle=True,random_state=1412)
    validation_loss = cross_validate(reg,X,y
                                     ,scoring="neg_root_mean_squared_error"
                                     ,cv=cv #交叉验证模式
                                     ,verbose=False #是否打印进程
                                     ,n_jobs=-1 #线程数
                                     ,error_score='raise'
                                    )
    #最终输出RMSE
    return np.mean(abs(validation_loss["test_score"]))

2 定义优化目标函数的具体流程

在HyperOpt中,我们可以通过调整参数algo来自定义执行贝叶斯优化的具体算法,而在Optuna中也可以实现相同的操作。大部分备选的算法都集中在Optuna的模块sampler中,包括我们熟悉的TPE优化、随机网格搜索以及其他各类更加高级的贝叶斯过程。对于Optuna.sampler中调用的类,我们可以直接输入参数来设置初始观测值的数量,以及每次计算采集函数时所考虑的观测值量。在Optuna库中并没有集成实现高斯过程的方法,但我们可以从scikit-optimize中导入高斯过程来作为Optuna中的algo设置,而具体的高斯过程相关的参数则可以通过以下方法进行设置:

python 复制代码
def optimizer_optuna(n_trials, algo):
    
    #定义使用TPE或者GP
    if algo == "TPE":
        algo = optuna.samplers.TPESampler(n_startup_trials = 10, n_ei_candidates = 24)
    elif algo == "GP":
        from optuna.integration import SkoptSampler
        import skopt
        algo = SkoptSampler(skopt_kwargs={'base_estimator':'GP', #选择高斯过程
                                          'n_initial_points':10, #初始观测点10个
                                          'acq_func':'EI'} #选择的采集函数为EI,期望增量
                           )
    
    #实际优化过程,首先实例化优化器
    study = optuna.create_study(sampler = algo #要使用的具体算法
                                , direction="minimize" #优化的方向,可以填写minimize或maximize
                               )
    #开始优化,n_trials为允许的最大迭代次数
    #由于参数空间已经在目标函数中定义好,因此不需要输入参数空间
    study.optimize(optuna_objective #目标函数
                   , n_trials=n_trials #最大迭代次数(包括最初的观测值的)
                   , show_progress_bar=True #要不要展示进度条呀?
                  )
    
    #可直接从优化好的对象study中调用优化的结果
    #打印最佳参数与最佳损失值
    print("\n","\n","best params: ", study.best_trial.params,
          "\n","\n","best score: ", study.best_trial.values,
          "\n")
    
    return study.best_trial.params, study.best_trial.values

3 执行实际优化流程

Optuna库虽然是当今最为成熟的HPO方法之一,但当参数空间较小时,Optuna库在迭代中容易出现抽样BUG,即Optuna会持续抽到曾经被抽到过的参数组合,并且持续报警告说"算法已在这个参数组合上检验过目标函数了"。在实际迭代过程中,一旦出现这个Bug,那当下的迭代就无用了,因为已经检验过的观测值不会对优化有任何的帮助,因此对损失的优化将会停止。如果出现该BUG,则可以增大参数空间的范围或密度。或者使用如下的代码令警告关闭:

python 复制代码
import warnings
warnings.filterwarnings('ignore', message='The objective has been evaluated at this point before.')
python 复制代码
best_params, best_score = optimizer_optuna(10,"GP") #默认打印迭代过程
python 复制代码
optuna.logging.set_verbosity(optuna.logging.ERROR) #关闭自动打印的info,只显示进度条
#optuna.logging.set_verbosity(optuna.logging.INFO)
best_params, best_score = optimizer_optuna(300,"TPE")

最后总结下HPO库

HPO库 优劣评价 推荐指数
bayes_opt ✅实现基于高斯过程的贝叶斯优化 ✅当参数空间由大量连续型参数构成时 ⛔包含大量离散型参数时避免使用 ⛔算力/时间稀缺时避免使用 ⭐⭐
hyperopt ✅实现基于TPE的贝叶斯优化 ✅支持各类提效工具 ✅进度条清晰,展示美观,较少怪异警告或报错 ✅可推广/拓展至深度学习领域 ⛔不支持基于高斯过程的贝叶斯优化 ⛔代码限制多、较为复杂,灵活性较差 ⭐⭐⭐⭐
optuna ✅(可能需结合其他库)实现基于各类算法的贝叶斯优化 ✅代码最简洁,同时具备一定的灵活性 ✅可推广/拓展至深度学习领域 ⛔非关键性功能维护不佳,有怪异警告与报错 ⭐⭐⭐⭐
相关推荐
小馒头学python5 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
正义的彬彬侠17 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
羊小猪~~34 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
正义的彬彬侠1 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn
资源补给站2 小时前
论文2—《基于柔顺控制的智能神经导航手术机器人系统设计》文献阅读分析报告
机器学习·机器人·手术机器人
武子康2 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
___Dream2 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
西柚小萌新4 小时前
8.机器学习--决策树
人工智能·决策树·机器学习
阡之尘埃12 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
Java Fans17 小时前
深入了解逻辑回归:机器学习中的经典算法
机器学习