【小笔记】算法训练基础超参数调优思路

【学而不思则罔,思维不学则怠】

本文总结一下常见的一些算法训练超参数调优思路(陆续总结更新),包括:

  • batchsize
  • 学习率
  • epochs
  • dropout(待添加)

Batch_size

2023.9.29

  • 简单来说,较大的bz可以加快训练速度,特别是基于GPU进行模型训练时,应该在显存允许范围内,尽量使用较大的bz。
  • 两个极端:假设内存/显存足够大,每次都是使用全量数据进行梯度计算,此时训练效率最高,但训练极容易陷入鞍点(局部最优)而无法跳出,表现出来就是loss还比较高,但是已经开始收敛了。
  • 但bz不是说越大越好,越大bz意味着用更多的数据来计算梯度,越容易陷入鞍点,但若batch数量较多,则当一个batch的数据使算法陷入鞍点了,另一个batch的数据有机会使算法跳出鞍点。
  • 因此bz尽可能选大一些,同时保证batch数量不太少,最简单的方法就是从GPU显存或CPU内存运行的最大值开始实验,若发现出现了loss过早收敛且比较高时(陷入鞍点),此时则放弃充分利用GPU,而应考虑减少bz,使loss能够继续下降。
  • 结论:从显存/内容利用率角度和防止陷入鞍点两个角度来思考bz。

学习率

2024.1.16

  • lr若太大,则会导致训练波动,不容易收敛,表现出来就是算法的loss在下降一段时间后,又突然增加,然后又下降,然后有增加,就像乒乓球落地上,弹弹弹。loss曲线并不光滑,如锯齿版的下降(就像下图的样子)。甚至始终无法收敛。
  • lr若太小,最大的问题就是需要更长的时间来进行收敛。
  • 对lr的设置除了经验值外,就是观看loss收敛情况。

epochs

2024.1.16

  • 它就很简单了,先推荐设置一个较大的值,然后观察能收敛的epoch即可

dropout

待添加

相关推荐
汤永红6 分钟前
week1-[顺序结构]大海
c++·算法·信睡奥赛
我们从未走散23 分钟前
设计模式学习笔记-----单例模式
java·笔记·学习·单例模式·设计模式
博哥爱吃肉37 分钟前
第2篇_Go语言基础语法_变量常量与数据类型
开发语言·算法·golang
Xの哲學4 小时前
TCP 连接管理:深入分析四次握手与三次挥手
网络·网络协议·算法
思通数据5 小时前
AI视频监控:重构安防行业智能化新生态
人工智能·安全·目标检测·机器学习·计算机视觉·重构·数据挖掘
宇寒风暖5 小时前
@(AJAX)
前端·javascript·笔记·学习·ajax
计算机sci论文精选6 小时前
CVPR2025敲门砖丨机器人结合多模态+时空Transformer直冲高分,让你的论文不再灌水
人工智能·科技·深度学习·机器人·transformer·cvpr
XIAO·宝6 小时前
机器学习----绪论
人工智能·机器学习
41号学员6 小时前
机器学习绪论
人工智能·机器学习
华清远见成都中心6 小时前
基于深度学习的异常检测算法在时间序列数据中的应用
人工智能·深度学习·算法