Pytorch 与 Tensorflow对比学习 第3周:进阶主题 Day 15-16: 卷积神经网络(CNN)

第3周:进阶主题
Day 15-16: 卷积神经网络(CNN)

在这两天中,我专注于学习卷积神经网络(CNN)的基础知识,包括卷积层和池化层的工作原理以及它们在图像处理中的应用。

卷积神经网络基础:

卷积层:学习了卷积层如何通过滤波器(或称为核)提取图像的特征。每个滤波器负责捕捉图像中的不同特征。

激活函数:理解了ReLU(Rectified Linear Unit)作为激活函数在CNN中的广泛应用,用于增加非线性。

池化层:了解了池化层(尤其是最大池化)如何帮助减少参数数量并防止过拟合,同时保留重要特征。

实践构建CNN:

设计并实现了一个简单的CNN模型,用于处理图像数据。

模型包括卷积层、激活函数、池化层以及全连接层来进行分类。

PyTorch实现:

在PyTorch中,我使用torch.nn模块定义了CNN的各个组件。

实现了一个包含卷积层、ReLU激活和最大池化层的简单网络。

下面是一个简单的CNN模型的PyTorch实现示例:

import torch

import torch.nn as nn

import torch.optim as optim

定义一个简单的CNN

class SimpleCNN(nn.Module):

def init (self):

super(SimpleCNN, self).init ()

self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)

self.relu = nn.ReLU()

self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

self.fc = nn.Linear(32 * 14 * 14, 10) # 假设输入图像大小为28x28

复制代码
def forward(self, x):
    x = self.conv1(x)
    x = self.relu(x)
    x = self.maxpool(x)
    x = x.view(-1, 32 * 14 * 14)  # 展平操作
    x = self.fc(x)
    return x

实例化模型、定义损失函数和优化器

model = SimpleCNN()

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)、

TensorFlow实现

在TensorFlow中,我们将使用Keras API来构建相似的CNN结构。这个例子同样包含卷积层、ReLU激活函数、池化层和一个全连接层。

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

定义一个简单的CNN

model = Sequential([

Conv2D(32, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu', input_shape=(28, 28, 1)),

MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),

Flatten(),

Dense(10, activation='softmax')

])

编译模型

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

模型概要

model.summary()

在这个TensorFlow实现中,我们使用了Sequential模型来顺序地添加层。这种方法使得模型的构建过程更加直观和简洁。Conv2D和MaxPooling2D分别对应于PyTorch中的nn.Conv2d和nn.MaxPool2d。Flatten层用于将卷积层的输出展平,以便输入到全连接层(Dense层)。

通过对比PyTorch和TensorFlow的实现,可以看出两个框架在构建CNN方面的异同,这有助于更深入地理解这些概念,并在不同框架间转换思维方式。

相关推荐
云上艺旅11 小时前
K8S学习之基础七十四:部署在线书店bookinfo
学习·云原生·容器·kubernetes
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
A旧城以西13 小时前
数据结构(JAVA)单向,双向链表
java·开发语言·数据结构·学习·链表·intellij-idea·idea
无所谓จุ๊บ13 小时前
VTK知识学习(50)- 交互与Widget(一)
学习·vtk
FAREWELL0007513 小时前
C#核心学习(七)面向对象--封装(6)C#中的拓展方法与运算符重载: 让代码更“聪明”的魔法
学习·c#·面向对象·运算符重载·oop·拓展方法
吴梓穆13 小时前
UE5学习笔记 FPS游戏制作38 继承标准UI
笔记·学习·ue5
誉鏐13 小时前
PyTorch复现线性模型
人工智能·pytorch·python
Three~stone14 小时前
MySQL学习集--DDL
数据库·sql·学习
齐尹秦14 小时前
HTML 音频(Audio)学习笔记
学习
瞌睡不来14 小时前
(学习总结32)Linux 基础 IO
linux·学习·io