【Python机器学习】多分类问题的不确定度

decision_function和predict_proba也适用于多分类问题。还是以鸢尾花数据集为例:

python 复制代码
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make_circles,load_iris
import numpy as np
from sklearn.model_selection import train_test_split

iris=load_iris()
X_train,X_test,y_train,y_test=train_test_split(
    iris.data,iris.target,random_state=0
)

gbrt=GradientBoostingClassifier(learning_rate=0.01,random_state=0)
gbrt.fit(X_train,y_train)
print('决策函数结果的形状:{}'.format(gbrt.decision_function(X_test).shape))
print('决策函数结果:{}'.format(gbrt.decision_function(X_test)[:6,:]))

可以看到,对于多分类的情况, decision_function的形状为(n_samples,n_classes),每一列对应每个类别的"确定度分数",分数较高的类别可能性更大,得分较低的分类可能性小,可以找到每个数据点的最大元素,也就是预测结果:

python 复制代码
print('决策函数得分最高的分类:{}'.format(np.argmax(gbrt.decision_function(X_test),axis=1)))
print('模型预测结果:{}'.format(gbrt.predict(X_test)))

predict_proba输出的形状相同,也是(n_samples,n_classes),每个数据点的所有可能类别的概率相加为1:

python 复制代码
print('预测每个分类的概率:{}'.format(gbrt.predict_proba(X_test)[:6]))

总之,decision_function和predict_proba的形状始终相同,都是(n_samples,n_classes)

相关推荐
拾忆-eleven31 分钟前
C语言实战:用Pygame打造高难度水果消消乐游戏
c语言·python·pygame
一只可爱的小猴子37 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
旦莫1 小时前
Python 教程:我们可以给 Python 文件起中文名吗?
开发语言·python
豌豆花下猫1 小时前
Python 潮流周刊#99:如何在生产环境中运行 Python?(摘要)
后端·python·ai
小杨4041 小时前
python入门系列二十(peewee)
人工智能·python·pycharm
弧襪1 小时前
FlaskRestfulAPI接口的初步认识
python·flaskrestfulapi
船长@Quant1 小时前
文档构建:Sphinx全面使用指南 — 进阶篇
python·markdown·sphinx·文档构建
爱研究的小陈1 小时前
Day 4:机器学习初探——从监督学习到无监督学习
机器学习
cloudy4911 小时前
强化学习:历史基金净产值,学习最大化长期收益
python·强化学习
Bruce_Liuxiaowei2 小时前
使用Python脚本在Mac上彻底清除Chrome浏览历史:开发实战与隐私保护指南
chrome·python·macos