【Python机器学习】多分类问题的不确定度

decision_function和predict_proba也适用于多分类问题。还是以鸢尾花数据集为例:

python 复制代码
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make_circles,load_iris
import numpy as np
from sklearn.model_selection import train_test_split

iris=load_iris()
X_train,X_test,y_train,y_test=train_test_split(
    iris.data,iris.target,random_state=0
)

gbrt=GradientBoostingClassifier(learning_rate=0.01,random_state=0)
gbrt.fit(X_train,y_train)
print('决策函数结果的形状:{}'.format(gbrt.decision_function(X_test).shape))
print('决策函数结果:{}'.format(gbrt.decision_function(X_test)[:6,:]))

可以看到,对于多分类的情况, decision_function的形状为(n_samples,n_classes),每一列对应每个类别的"确定度分数",分数较高的类别可能性更大,得分较低的分类可能性小,可以找到每个数据点的最大元素,也就是预测结果:

python 复制代码
print('决策函数得分最高的分类:{}'.format(np.argmax(gbrt.decision_function(X_test),axis=1)))
print('模型预测结果:{}'.format(gbrt.predict(X_test)))

predict_proba输出的形状相同,也是(n_samples,n_classes),每个数据点的所有可能类别的概率相加为1:

python 复制代码
print('预测每个分类的概率:{}'.format(gbrt.predict_proba(X_test)[:6]))

总之,decision_function和predict_proba的形状始终相同,都是(n_samples,n_classes)

相关推荐
费弗里1 小时前
Python全栈应用开发利器Dash 3.x新版本介绍(1)
python·dash
平和男人杨争争1 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
归去_来兮1 小时前
支持向量机(SVM)分类
机器学习·支持向量机·分类
李少兄9 天前
解决OSS存储桶未创建导致的XML错误
xml·开发语言·python
就叫飞六吧9 天前
基于keepalived、vip实现高可用nginx (centos)
python·nginx·centos
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python
学Linux的语莫9 天前
python基础语法
开发语言·python
匿名的魔术师9 天前
实验问题记录:PyTorch Tensor 也会出现 a = b 赋值后,修改 a 会影响 b 的情况
人工智能·pytorch·python
Ven%9 天前
PyTorch 张量(Tensors)全面指南:从基础到实战
人工智能·pytorch·python
mahuifa9 天前
PySide环境配置及工具使用
python·qt·环境配置·开发经验·pyside