DINO:DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

论文名称:DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

发表时间:ICLR2023

作者及组织:Shilong Liu, Feng Li等,来自IDEA、港中文、清华。

前言

该篇论文在DN-DETR基础上,额外引进3个trick进一步增强DETR的性能:在12epoch下coco上达到了49.0map。本文将分别介绍这3个trick,

1、方法

上图为模型的总体结构图,改进部分为框中标红的部分,一个是用于第二阶段的query selection模块,另外一部分则是在去噪训练中额外引入了加噪的负样本来进行训练(DN-DETR中只有加噪的正样本)。

1.1.MixQuerySelection

如下图所示,作者比较了三种从Encoder中query select方式,其中蓝色框表示content query,白色框表示anchor。

图(a)没有用到Encoder的输出,content query是初始化为0,anchor即object query是可学习的;

图(b)是Deformable Detr中做法,从Encoder中选择topK个得分高的query并经过线性映射来得到动态可学习的anchor和content query;

图(c)是本文做法,考虑到模型的Encoder在初始阶段抽取出特征可能会使Decoder困惑,于是本文保持content query初始化为全0,而anchor则是从Encoder中动态挑出来的。

1.2.Contrastive DeNoising Training

在DN-DETR中是仅给gt增加了正样本的噪声来作为额外的gt。但模型没有判别负样本/困难样本的能力,为了区分gt附近的预测框,作者在训练过程中新增加了负样本gt。如下图所示, < λ 1 \lambda_1 λ1 的加噪gt为正样本,在[ λ 1 \lambda_1 λ1 , λ 2 \lambda_2 λ2]之间的作为加噪负样本。

1.3. Look Forward Twice

下图左边是每层DecoderLayer在预测box的梯度流向,发现层与层之间其实没有交互,是断开的;于是作者设计了右边的级联形式,使得当前层box预测能够看见前面层的预测信息。

2、实验

DINO的性能还是很高的,在coco上36epoch达到50.9。

50.9基本已经饱和了,于是作者用更大的backbone以及更大的数据集Object365进行试验,并在coco上微调。取得了惊人的63.1map。

消融实验看出,在增加了上述三个trick后,涨了1.4个点。emmm...

相关推荐
顾北121 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887821 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰1 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技2 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_2 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1513 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai3 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205313 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟3 小时前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战3 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源