DINO:DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

论文名称:DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

发表时间:ICLR2023

作者及组织:Shilong Liu, Feng Li等,来自IDEA、港中文、清华。

前言

该篇论文在DN-DETR基础上,额外引进3个trick进一步增强DETR的性能:在12epoch下coco上达到了49.0map。本文将分别介绍这3个trick,

1、方法

上图为模型的总体结构图,改进部分为框中标红的部分,一个是用于第二阶段的query selection模块,另外一部分则是在去噪训练中额外引入了加噪的负样本来进行训练(DN-DETR中只有加噪的正样本)。

1.1.MixQuerySelection

如下图所示,作者比较了三种从Encoder中query select方式,其中蓝色框表示content query,白色框表示anchor。

图(a)没有用到Encoder的输出,content query是初始化为0,anchor即object query是可学习的;

图(b)是Deformable Detr中做法,从Encoder中选择topK个得分高的query并经过线性映射来得到动态可学习的anchor和content query;

图(c)是本文做法,考虑到模型的Encoder在初始阶段抽取出特征可能会使Decoder困惑,于是本文保持content query初始化为全0,而anchor则是从Encoder中动态挑出来的。

1.2.Contrastive DeNoising Training

在DN-DETR中是仅给gt增加了正样本的噪声来作为额外的gt。但模型没有判别负样本/困难样本的能力,为了区分gt附近的预测框,作者在训练过程中新增加了负样本gt。如下图所示, < λ 1 \lambda_1 λ1 的加噪gt为正样本,在[ λ 1 \lambda_1 λ1 , λ 2 \lambda_2 λ2]之间的作为加噪负样本。

1.3. Look Forward Twice

下图左边是每层DecoderLayer在预测box的梯度流向,发现层与层之间其实没有交互,是断开的;于是作者设计了右边的级联形式,使得当前层box预测能够看见前面层的预测信息。

2、实验

DINO的性能还是很高的,在coco上36epoch达到50.9。

50.9基本已经饱和了,于是作者用更大的backbone以及更大的数据集Object365进行试验,并在coco上微调。取得了惊人的63.1map。

消融实验看出,在增加了上述三个trick后,涨了1.4个点。emmm...

相关推荐
John_ToDebug17 分钟前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
居然JuRan17 分钟前
LangGraph从0到1:开启大模型开发新征程
人工智能
双向3326 分钟前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户51914958484528 分钟前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc
人类发明了工具29 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
用户51914958484539 分钟前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
CoovallyAIHub40 分钟前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub43 分钟前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
星期天要睡觉44 分钟前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
lxmyzzs1 小时前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12