DINO:DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

论文名称:DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

发表时间:ICLR2023

作者及组织:Shilong Liu, Feng Li等,来自IDEA、港中文、清华。

前言

该篇论文在DN-DETR基础上,额外引进3个trick进一步增强DETR的性能:在12epoch下coco上达到了49.0map。本文将分别介绍这3个trick,

1、方法

上图为模型的总体结构图,改进部分为框中标红的部分,一个是用于第二阶段的query selection模块,另外一部分则是在去噪训练中额外引入了加噪的负样本来进行训练(DN-DETR中只有加噪的正样本)。

1.1.MixQuerySelection

如下图所示,作者比较了三种从Encoder中query select方式,其中蓝色框表示content query,白色框表示anchor。

图(a)没有用到Encoder的输出,content query是初始化为0,anchor即object query是可学习的;

图(b)是Deformable Detr中做法,从Encoder中选择topK个得分高的query并经过线性映射来得到动态可学习的anchor和content query;

图(c)是本文做法,考虑到模型的Encoder在初始阶段抽取出特征可能会使Decoder困惑,于是本文保持content query初始化为全0,而anchor则是从Encoder中动态挑出来的。

1.2.Contrastive DeNoising Training

在DN-DETR中是仅给gt增加了正样本的噪声来作为额外的gt。但模型没有判别负样本/困难样本的能力,为了区分gt附近的预测框,作者在训练过程中新增加了负样本gt。如下图所示, < λ 1 \lambda_1 λ1 的加噪gt为正样本,在[ λ 1 \lambda_1 λ1 , λ 2 \lambda_2 λ2]之间的作为加噪负样本。

1.3. Look Forward Twice

下图左边是每层DecoderLayer在预测box的梯度流向,发现层与层之间其实没有交互,是断开的;于是作者设计了右边的级联形式,使得当前层box预测能够看见前面层的预测信息。

2、实验

DINO的性能还是很高的,在coco上36epoch达到50.9。

50.9基本已经饱和了,于是作者用更大的backbone以及更大的数据集Object365进行试验,并在coco上微调。取得了惊人的63.1map。

消融实验看出,在增加了上述三个trick后,涨了1.4个点。emmm...

相关推荐
3DVisionary4 分钟前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星6 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星6 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
程序员Linc24 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh32 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能36 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_797882091 小时前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能1 小时前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
碳基学AI1 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习