RAG进阶 多用户多文档

我在LlamaIndex和LangChain框架学习中,都有玩过RAG。最近准备开个RAG进阶系统,一起学习AI, 一起成长。欢迎点赞,留言交流。

Advanced RAG 系列:

RAG 进阶 LlamaIndex多文档

RAG 进阶 多模态图片检索

RAG 进阶 LlamaIndex多文档

前言

Advanced RAG 系列学习了先是单个文档的半结构数据抽取table 、图片,再是多文档Object Index关联。本文最后一篇, 聊聊多用户。在基于AI构建产品时,我们要考虑多用户,比如不同的权限。我们一起来学习下多用户多文档这一较复杂的RAG知识库。

Per-User Retrieval

LangChain官方有一篇Per-User Retrieval,我们可以理解为每个用户的检索或基于用户的检索。当RAG检索前面加了用户这个产品维度最重要的参数时,有什么约束?

上图是Naive RAG,也就是最简单的RAG工作流。Naive RAG,相对于Advanced RAG,前者简单,但是性能不好。后者虽然复杂,但性能和准确度更佳。这得益于Advanced RAG 抽离了table 、image 等半结构数据、多文档关联索引等。

我们先基于上图,来回忆一下某个文档要被索引需要做以下工作:

  • 文档的读取 Document
  • 数据的拆分 Chunk
  • 文档的嵌入 Embedding
  • 向量存储 Vector Store
  • 检索器 Retriever

当我们打理过很多次RAG应用后,对上面的流程已经很熟悉。   当我们再考虑多用户的情况时,文档和向量数据,可能仅对有权限的用户可见,而对其它用户不可见,我们一般是在Vector Store中对用户的数据进行隔离。比如提供namespace,就能解决。   我们以Pincone向量数据库为例,看看如何为多用户构建向量数据库和索引,实现多用户检索。

实战

  • 安装依赖
css 复制代码
!pip install langchain openai pinecone-client pypdf tiktoken -q -U

pypdf,我们会对pdf文件做索引。tiktoken做分词。

  • pinecone 准备

创建了一个multi-users索引数据库。维度和模型相关,OpenAI是1536。其它使用默认的就好,点击确认创建。

我们还可以在API KEYS 找到Pinecone api_key,等下会用到。

  • pinecone 和 openai 环境变量设置
ini 复制代码
from google.colab import userdata PINECONE_API_KEY=userdata.get('PINECONE_API_KEY') 
PINECONE_ENVIRONMENT="us-west4-gcp" 
PINECONE_INDEX="multi-users" 
OPENAI_API_KEY=userdata.get('OPENAI_API_KEY') 
import os 
os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY

  我们将pinecone的一些数据存放在colab的secret里。

  • 引入需要的库
python 复制代码
import pinecone  #向量数据库
# embedding
from langchain.embeddings.openai import OpenAIEmbeddings 
# langchain 的pinecone
from langchain.vectorstores import Pinecone
  • 实例化向量数据库
ini 复制代码
# 初始化pinecone
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT) 
# 索引
index = pinecone.Index(PINECONE_INDEX) 
# 嵌入
embeddings = OpenAIEmbeddings(api_key=OPENAI_API_KEY) 
# 生成向量数据库实例
vectorstore = Pinecone(index, embeddings, "text")
  • 下载两份pdf文件,指定不同的命名空间
ini 复制代码
!wget -O uniswap-v3.pdf https://uniswap.org/whitepaper-v3.pdf
!wget -O electronic-health-records.pdf https://med.stanford.edu/content/dam/sm/ehr/documents/SM-EHR-White-Papers_v12.pdf
USER_1 = "Alex" 
USER_2 = "Lucy"

uniswap白皮书属于Lucy的专家知识库chatbot;electronic-health-records属于Alex。

  • 将文档放入向量数据库,指定namespace
ini 复制代码
# PyPDFLoader
from langchain.document_loaders import PyPDFLoader 
# 加载白皮书
loader = PyPDFLoader("uniswap-v3.pdf")
# 使用默认的分割
documents = loader.load_and_split() 
# 放入向量数据库,指定命名空间为USER_2 目标达到了
vectorstore.add_documents(documents, namespace=USER_2)
ini 复制代码
loader = PyPDFLoader("electronic-health-records.pdf") 

documents = loader.load_and_split() 

vectorstore.add_documents(documents, namespace=USER_1)
  • 提问, 这个问题只有Lucy问才能回答
ini 复制代码
question = "What is uniswap?"
python 复制代码
# 检索器
from langchain.schema.vectorstore import VectorStoreRetriever 

from langchain.llms import OpenAI
# Memory
from langchain.memory import ConversationBufferMemory 
# QAPrompt
from langchain.chains.conversational_retrieval.prompts import QA_PROMPT
# QA chain
from langchain.chains.question_answering import load_qa_chain 

from langchain.chains import ConversationalRetrievalChain
  • 检索
ini 复制代码
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"namespace": USER_1, "score_threshold": .9}) 
relevant_documents = retriever.get_relevant_documents(question) 

relevant_documents

这里查不出内容,因为USER_1是Alex,没有uniswap的权限。

ini 复制代码
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"namespace": USER_2, "score_threshold": .9}) 
relevant_documents = retriever.get_relevant_documents(question) 

relevant_documents

换成USER_2,结果就有了, 多用户权限检索我们实现了。

总结

  • pinecone向量数据库支持namespace, 用于多用户权限隔离

参考资料

  • LangChain文档

  • 【有腔调的RAG】04 支持多用户多文档的向量存储与检索

  • 代码\]([Advanced-RAG/04_langchain_per_user_retrieval.ipynb at main · sugarforever/Advanced-RAG (github.com)](https://link.juejin.cn?target=https%3A%2F%2Fgithub.com%2Fsugarforever%2FAdvanced-RAG%2Fblob%2Fmain%2F04_langchain_per_user_retrieval.ipynb "https://github.com/sugarforever/Advanced-RAG/blob/main/04_langchain_per_user_retrieval.ipynb"))

相关推荐
董厂长38 分钟前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
墨风如雪4 小时前
告别“面目全非”!腾讯混元3D变身“建模艺术家”,建模效率直接起飞!
aigc
G皮T4 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼4 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间4 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享4 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾5 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码5 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5895 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien5 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt