书生·浦语大模型实战营-学习笔记4

XTuner 大模型单卡低成本微调实战

Finetune简介

常见的两种微调策略:增量预训练、指令跟随

指令跟随微调

数据是一问一答的形式

对话模板构建

每个开源模型使用的对话模板都不相同

指令微调原理:

由于只有答案部分是我们期望模型来进行回答的内容,所以我们只对答案部分进行损失的计算

增量预训练微调

数据都是陈述句,没有问答形式

LoRA & QLoRA

XTuner中使用的微调原理:LoRA & QLoRA

如果我们要对整个模型的所有参数都进行调整的话,需要非常大的显存才能够进行训练,但是用LoRA的方法就不需要这么大的显存开销了

比较:全参数微调、LoRA、QLoRA

全参数微调:整个模型都要加载到显存中,所有模型参数的优化器也都要加载到显存中,显存不够根本无法进行·

LoRA:模型也是要先加载到显存中,但是我们只需要保存LoRA部分的参数优化器,大大减小了显存占用

QLoRA:加载模型时就使用4bit量化的方式加载(相当于不那么精确的加载),但是可以节省显存开销,QLoRA部分的参数优化器,还可以在GPU和CPU之间进行调度【这是Xtunner进行整合的功能 】,显存满了就自动去内存中去跑。

XTuner介绍


XTuner快速上手

  1. 安装
bash 复制代码
pip install xtuner
  1. 挑选配置模版
bash 复制代码
xtuner list-cfg -p internlm_20b
  1. 一键训练
bash 复制代码
xtuner train internlm_20b_qlora_oasst1_512_e3
  1. Config 命名规则

|-------|---------------------------------|
| 模型名 | internlm_20b ( 无 chat 代表是基座模型 ) |
| 使用算法 | qlora |
| 数据集 | oasst1 |
| 数据长度 | 512 |
| Epoch | e3, epoch 3 |

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/67e55262c53d4d988fa0948795877b8c.png) ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2746f7cf958b47a1b2b388a43f5a9260.png) ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/3a93273b4b84489ca5be2e991156e1d6.png) ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/3a14ced892df4f02a58633f803aff1e9.png)

XTunner支持多数据的样本拼接,增加运行效率,输入模型,统一的进行梯度的传播

自定义数据集建议使用json格式

8GB显卡玩转LLM



动手实战环节

https://github.com/InternLM/tutorial/blob/main/xtuner/README.md

相关推荐
Jay20021112 分钟前
【机器学习】7-9 分类任务 & 逻辑回归的成本函数 & 逻辑回归的梯度下降
笔记·机器学习·分类
wavemap1 小时前
先到先得:免费订阅一年ChatGPT Go会员
开发语言·chatgpt·golang
WXG10111 小时前
【Flask】前后端交互示例
笔记·学习
d111111111d1 小时前
STM32--SPI通讯外设-学习笔记
笔记·stm32·单片机·嵌入式硬件·学习
d111111111d2 小时前
在STM32中有参宏定义define该怎么使用
笔记·stm32·单片机·嵌入式硬件·学习
带刺的坐椅2 小时前
(让 Java IA & MCP 更简单 )Solon AI v3.7.2 发布
ai·chatgpt·openai·solon·mcp
WWZZ20253 小时前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能
麦麦在写代码3 小时前
前端学习4
前端·学习
老友@3 小时前
RAG 的诞生:为了让 AI 不再“乱编”
人工智能·搜索引擎·ai·语言模型·自然语言处理·rag
2401_77CN3 小时前
汇川Easy系列PLC封装一阶低通滤波器FC【双线性变换】(定时中断应用,固定步长求解)
笔记·自动化